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ABSTRACT 

In this paper, we study the dimension of a module over a commutative 
ring, which is defined to be the length of a longest chain of prime submod- 
ules. This notion is analogous to the usual Krull dimension of a ring. We 
investigate how some bounds on the dimension of modules are related to 
the structure of the underlying ring. The dimension of finitely generated 
modules over a Dedekind domain is also studied. By examining the struc- 
ture of prime submodules, a formula for the dimension of a free module 
of finite rank, over a Noetherian one-dimensional domain, is obtained. 

1. I n t r o d u c t i o n  

L e t  R b e  a c o m m u t a t i v e  r i n g  w i t h  i d e n t i t y  a n d  le t  M b e  a u n i t a l  R - m o d u l e .  A 

s u b m o d u l e  P of  M is ca l l ed  a p r i m e  s u b m o d u l e  of  M if  

(i) P ¢ M ,  a n d  

(ii) w h e n e v e r  r C R a n d  m E M \ P  w i t h  r m  E P ,  t h e n  r M  C_ P .  

N o t e  t h a t  i f  P is a p r i m e  s u b m o d u l e  of  M ,  t h e n  ( P  : M ) ,  t h e  a n n i h i l a t o r  

of  M / P  over  R,  is a p r i m e  ideal .  I n  t h a t  case,  we say  P is a ( P  : M ) - p r i m e  
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submodule of M. Prime submodules have been studied extensively by many 

authors (for example, see [1], [2], [5], [7], [8], [10], [11], and [12]). 

Suppose that  the module M contains a prime submodule P.  Then the h e i g h t  

of P,  denoted by ht P,  is the greatest non-negative integer n such that  there 

exists a chain of prime submodules of M 

Po 9 P~ c - . .  ~ P,  = P, 

and ht P = oc if no such n exists. The dimension D(M) of M is defined by 

D(M) = sup{ht P :  P is a prime submodule of M ) .  

D(R) is just the usual (Krull) dimension of R. In this paper, we investigate 

how the bounds on the dimension of modules are related to the structure of the 

underlying ring. By characterizing prime submodules of R (n), we are able to work 

out an explicit formula for D(R(n)), where R is a Noetherian one-dimensional 

domain. There are already some known results (see [1] and [10]) about  the 

dimension of modules. In [1], chains of certain prime modules were studied. A 

lower bound for D(M) was given in [10]. 

Before we describe the main results of this paper, we first fix some notation. 

All the rings in this paper are assumed to be commutative with identity, not 

necessarily Noetherian, and modules will be unital modules. A local ring means 

a commutative Noetherian ring with a unique maximal ideal. 

Let R be a ring and M be an R-module. It  is clear that  

D(M) = sup{D(M/~M): ~ is a prime ideal of R}. 

In view of this, we shall work mostly with domains. 

Let R be a domain. We shall use R (n) to denote the free R-module of rank n, 

where n is a positive integer. Sometimes we write R G R instead of R (2). Let G 

and H be submodules of an R-module M. We define (G : H)  to be the ideal 

{ r E R : r H C _ G } .  

If N is an R-submodule of M,  then (N : M) is the annihilator of the quotient 

R-module M/N. In particular, the annihilator of M is (0 : M).  Sometimes, we 

write ann(M) instead of (0 : M).  If M is torsion-free, then the rank of M is the 

dimension of the vector space FM = F ®R M over F,  where F is the field of 

fractions of R. The rank of M is denoted by rk M. If the base domain is not 

clear, we shall use rkR M to denote the rank of M over R. 
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Let R be a ring, not necessarily a domain, and q3 be a prime ideal of R. Let 

M be an R-module. We define Kv(M) to be the following R-submodule of M: 

{m E M : cm E ~ M  for some c E R \ ~ } .  

It is easily shown that M = Kg~(M) or Kv(M ) is a ~-prime submodule of M. 

Hence M = Kv(M) or M/Kg~(M) is a non-zero torsion-free R/gt-module. The 

~3-rank of M, denoted by rkv M, is defined by 

rkv M = rkR/~ (M/K~ (M)). 

In case R is a domain and M is an R-module, Ko(M) is the torsion submodule 

of M, and rk0 M = rkR(M/Ko(M)). We use #(M) to denote the least number 

of generators required to generate M. Let ~ be a maximal ideal of R. We shall 

denote by u(R~) the least positive integer k such that every ideal of RV can be 

generated by k elements. If no such k exists, we put u(Rv) = oe. Next we define 

u(R) = sup{u(Rv) : ~ is a maximal ideal of R}. 

Now we have all the necessary notation to describe the main results of this 

paper. 

As mentioned earlier, there is a lower bound for D(M) (see [10]). It is natural 

to ask whether there is any upper bound for D(M). It turns out that there is 

and one is given in Corollary 2.8, nanlely D(M) <_ #(M)D(R) + It(M) - 1. In 

general, this bound can be strict (see Theorem 6.1). In order to see whether the 

above upper bound can be improved, we restrict R to be a Pr/ifer domain. For 

any finitely generated module M over a Priifer domain R, we have the following 

sharper upper bound for D(M) (see Corollary 3.5): 

D(M) < D(R) + it(M) - 1. 

The converse holds when R is Noetherian. In fact, for a Noetherian domain 

R, the following statements are equivalent (see Theorem 3.6): 

(i) R is a Dedekind domain. 

(ii) D(R ('~)) = D(R) + n - 1 for any positive integer n. 

(iii) D(M) <_ D(R) + #(M) - 1 for any finitely generated R-module M. 

(iv) D(R ® R) <_ D(R) + 1. 
In section 4, we carry out a detailed study of dimension of finitely generated 

modules over a Dedekind domain. There is another characterization of Dedekind 

domains in terms of the dimension of the finitely generated modules. It turns 
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out that  for a Noetherian domain R to be Dedekind, it is necessary and sufficient 

that  the dimension of every finitely generated R-module M must be given by 

D(M) = sup{D(R/~)  + rk v M - 1: ~ is a prime ideal of R and ann(M) C_ 9 }  

(see Theorem 4.7). 

Let R be a Noetherian one-dimensional domain. If M is a finitely generated 

torsion-free R-module, then one would expect D(M) to depend on the structure 

of M and properties of R. However, if the module M is the free R-module R (n), 

for some positive integer n, then D(M) ought to depend only on n and R. We 

shall show that  this is indeed the case. More precisely, D(R (n)) is given by (see 

Theorem 5.1): 

2n u~R) if u(R) [ n, 
D(R('~))= 2 n - [ ~ - ~ ] - I  i f u ( R ) ~ n .  

2. B o u n d s  o n  t h e  d i m e n s i o n  

In the first half of this section, we look at some bounds for the dimension of 

modules. Later, we study the structure of 0-prime submodules of a free module 

over a domain. The following result ([10, Theorem 3.4]) gives a lower bound for 

D(M) .  

PROPOSITION 2.1: Let R be a domain and let M be a non-zero finitely generated 

torsion-free R-module. Then D(M) >_ D(R) + r k M  - 1. 

Note that  if R is any domain with field of fractions K ¢ R and M is the R- 

module K,  then 0 is the only prime submodule of M so that D(M) = ht 0 = 0, 

r k M  -- 1 and D(R) > 1, so that D(M)  < D ( R ) + r k M - 1 .  Thus, Proposition 2.1 

requires the module M to be finitely generated. Next we generalize Proposition 

2.1. 

PROPOSITION 2.2: Let R be a ring and let M be a non-zero finitely generated 

R-module. Then D(M) >_ sup{D(R/~3) + rk v M - 1 : ~ is a prime ideal of R 

and ann(M) C_ ~3}. 

Proof: Let ~ be any prime ideal of R such that ann(M) C_ ~ with K v ( M )  

as defined in section 1. Note that M / K v ( M )  is a torsion-free (R/~)-module.  

Suppose that M = K~ (M). Since M is finitely generated, it follows that dM = 0 

for some d e R \ ~3 (see [1, Corollary 1.2]), and hence d e ann(M) _C ~3, a 
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contradiction. Hence M ¢ K ~ ( M ) .  Clearly, 

D ( M )  >_D(M/Kg3(M)), 

>D(R/9~) + rkR/g3(M/Kg~(M)) - 1, by Proposition 2.1, 

>_D(R/~) + rkv  M - 1. 

The result follows. | 

We shall see in Corollary 4.6 that  the lower bound in Proposition 2.2 is attained 

for finitely generated modules over a Dedekind domain. I t  will be proved shortly 

that  Proposition 2.2 holds when the supremum is taken over all maximal ideals, 

not necessarily containing ann(M).  To do that,  parts  of the following result will 

be needed. 

PROPOSITION 2.3: Let R be a ring, fir be a maximal ideal of R, and M be a 

non-zero finitely generated R-module. Then the following statements hold. 

(i) K ~ ( M )  = fiRM. 

(ii) ann(M) C_ fir i f  and only if  fiRM ¢ M.  

(iii) r k ~  M = #(M/f iRM).  

If, in addition, R is a domain but not a field, then D ( M )  >_ r k ( M / T )  = rko M, 

where T = Ko(M)  is the torsion submodule of M.  

Proof: The necessary part  of (ii) follows from an argument in the proof of [1, 

Corollary 1.2] or Nakayama's  Lemma. The other assertions are easy consequences 

of the definitions. | 

COROLLARY 2.4: Let R be a ring and let M be a non-zero finitely generated 

R-module. Then 

D ( M )  >_ sup{It(M/fiRM) - 1 : fir is a maximal ideal of R}. 

Proo~ Let fir be a maximal ideal of R. If M = fiRM, then I t(M/fiRM) = 

It(0) = 0. So that  D ( M )  >_ It(M/fiRM) - 1. Now, suppose that  M ¢ fiRM. By 

Proposition 2.3 (ii), ann(M) C 93L It  follows from Proposition 2.2 that  D ( M )  >_ 

D(R/fiR) + r k ~  M - 1. As fir is maximal,  D(R/fiR) = 0. Note that,  by Propo- 

sition 2.3 (iii), r k ~  M = It(M/fiRM). Consequently, D ( M )  > It(M/fiRM) - 1. 
| 

Definition 2.5: Let ~3 be a prime ideal of a ring R and M be an R-module. A 

chain of prime submodules of M 
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is homogeneous if each of P0, P1 , . . . ,  Pk is a q3-prime submodule of M. 

Suppose that P and Q are ~ and k~-prime submodules of M, respectively, 

with P C Q. Then q3 c_ 2 .  From this observation, we see that a chain of prime 

submodules of M is made up of homogeneous chains of prime submodules. 

LEMMA 2.6: Let M be a finitely generated torsion-free module over a domain 
R. Then the length of any homogeneous chain of prime submodules of M is at 

most It(M) - 1. 

Proof'. Let 

~ g ~ g S ~ . . . g ~  

be a homogeneous chain of q3-prime submodules of M. Note that  M/Po, P1/Po, 
P2/Po,.. . ,  Pk/Po are torsion-free modules over R/~ .  As M is finitely generated, 

M/Po is also finitely generated. Hence P1/Po, P2/Po,... ,  Pk/Po all have finite 

rank over R/q3. Now 

k 

rkR/v M/Po = rkR/v M/Pk + E rkR/v PjPi-1  
i-.~1 

>_k+l. 

Clearly, rkR/9~ M/Po < #(M/Po) < It(M). Therefore k < It(M) - 1. | 

THEOREM 2.7: Let M be a finitely generated torsion-free module over a domain 
R. Then D(M) < #(M)D(R)+#(M)-I .  Inpartieular, D(R (n)) < nD(R)+n-1.  

Proof: The last assertion follows immediately from the first. We now prove the 

first part. 

If D(R) is infinite, then there is nothing to prove. We may assume that  D(R) >_ 
0 is finite. By the remark after Definition 2.5, any chain of prime submodules 

of M is made up of at most D(R) + 1 distinct homogeneous chains of prime 

submodules - -  each homogeneous chain corresponding to a different prime ideal. 

By Lemma 2.6, the length of each homogeneous chain is at most #(M) - 1. Hence 

each homogeneous chain has at most #(M) terms. Then the number of terms in 

a chain of prime submodules of M is at most (D(R) + 1)#(M). Therefore the 

length of a chain of prime submodules is at most (D(R) + 1)#(M) - 1. II 
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COROLLARY 2.8: Let M be a finitely generated module over a domain R.  Then 

D ( M )  <_ # ( M ) D ( R )  + # ( M )  - 1. 

Proof: Suppose tha t  # ( M )  = k. Then M is a quotient module of the free 

module R (k). Thus  D ( M )  <_ D(R(k)). The required result follows from Theorem 

2.7. | 

We shall give an example in section 6 (see Theorem 6.1) to show tha t  in certain 

cases in Corollary 2.8, D ( M )  = # ( M ) D ( R )  + # (M)  - 1. 

In order to determine D(R(n)),  we need to know something about  the s tructure 

of prime submodules of R (n). In the rest of this section, we shall investigate the 

s tructure of prime submodules of R (n). 

LEMMA 2.9: Let R be a domain, let n and k be positive integers, let M denote 

the free R-module R (n), and let N be a submodule of  M of  rank n - k. Then N 

is a O-prime submodule of  M i f  and only i f  there exist a non-zero k × n echelon 

matrix  (a~j) over R and a basis {ul, u 2 , . . . ,  un} of  M such that 

n 

N = {r lul  + r2u2 + ""  + rnun C M : ~ a i j r j  = 0 for i = 1 , 2 , . . . , k } .  

Moreover, in this case ht N = n - k. 

Proof: The sufficiency par t  is clear. We now prove the necessary part.  

Suppose tha t  N is a 0-prime submodule of M.  Note tha t  M / N  is torsion-free. 

We have a short exact sequence 

0 >N ~ M - 5 - ~ M / N  ~0, 

where c~ and 7r are the natural  injection and surjection, respectively. Then  

r k M / N  = n - r k N  = k. I f x  C M,  then we denote the image o f x  in M / N  

by 2. Let {el, e2 . . . .  , en} be the s tandard  basis of U .  Then  {e-l, e-2,. . . ,  e-n} is a 

generat ing set of  M / N .  After renumbering those C~'s, we may assume tha t  

(a) {e-l, e-2,. . . ,  e-k} is linearly independent over R, and 

(b) for each j = k + 1, k + 2 , . . . ,  n, {el, e 2 , . . . ,  ek, e-j} is linearly dependent  

over R. 

From (b), for each j = k + 1, k + 2 , . . . ,  n, there exists a non-zero dj E R with 
k 

d j ~  C ~ i=1  Rei. Put  d = d k + l d k + 2 " " d n .  Note tha t  d ¢ 0 and d ( M / N )  C_ 
k ~ i = 1  R ~ .  Define a map 

k 

13: M / N  ---+ ~ R~:  2 ~ d2. 
i = l  
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It  is clear tha t /3  is a well defined R-module  homomorphism.  As M / N  is torsion- 

free, /3 is injective. Then we have an exact sequence 

k 

0 , N  
/=1 

Let A be the k × n matr ix  representing fl~ with respect to the bases 

{el,e2,...,e,~} and {el ,e2 , . . . , e -k} .  I t  is clear tha t  A is in echelon form. In 

fact A = [dIklB], where h is the k x k identity matr ix  and B is an k × (n - k) 

matr ix  over R. Since N = ker/~r, it follows tha t  N has the required form. 

We now prove the moreover part .  We have r k N  = n - k. In other words, F N  
has dimension n - k over F ,  the field of  fractions of R. Hence there exists a chain 

0 = Vo C Vi C V 2 C  . . . C V n _ k = F N  

of subspaces of FM. It  follows tha t  

0 =  V o N M  C+ V i N M  C V2["~M ~ . . . C  Vn-k["~M= F N N M =  N 

is a chain of 0-prime submodules of M.  Thus ht N > n - k. On the other  hand, 

if 

O= No C+ Ni C+ Nz C ... Z Nt = N 

is a chain of prime submodules of M ,  then (Ni : M)  _C (N  : M)  = 0 so tha t  

M/N~ is torsion-free for all 0 < i < t. Hence 

0 = FNo C+ FN~ C FNz c ... ~ FNt = F N  

is a chain of subspaces of FN,  which gives t _< rk N = n - k. Therefore ht N = 

n - k .  | 

Suppose tha t  R is a domain. By Proposi t ion 2.1, we have D(R ('~)) > D(R) + 
n - 1. If  R has a prime ideal ~ such tha t  u(Rv) is sufficiently large, then the 

following proposit ion gives a sharper lower bound for D(R(n)). 

PROPOSITION 2.10: Let R be a domain with elements ai E R(1 < i < n) and a 
prime ideal 9~ such that 

n 

~-~(Ii : Ra~) c ~,  
i = 1  

n where Ii = E ~  Raj. Then D(R (n)) >_ n + D((R/~)  (n)) >_ 2n + D(R/~3) - 1. 

Proof." Let M = R (n). Pu t  

P = {(ri ,r2, . . . ,rn)  E M :  airi + a 2 r 2  + . . . + a n r , ~  = 0}. 
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Note t ha t  a i ¢  0(1 < i < n).  By L e m m a  2.9, P is a 0-pr ime submodu le  of M 

wi th  ht  P = n - 1. Moreover,  P c g lM.  Thus  

D ( M )  >_ h t ~ M  + D ( ( R / ~ ) ( ~ ) ) ,  

>_n + D((R/~3)(~)) .  

By Propos i t i on  2.1, we have D((R/q3)  (~)) >_ D(R/q3)  + n - 1. Hence n + 

D((R /q3 ) " )  >_ 2n + D ( R / g l )  - 1. | 

Note tha t ,  in the  s t a t e m e n t  of P ropos i t ion  2.10, the  a s sumpt ion  on ~ is equiv- 

alent  to u ( R v )  >_ n. We now end this  sect ion wi th  a charac te r i za t ion  of a pr ime 

submodule  P in R (~) wi th  A n n ( R ( ~ ) / P )  being a m a x i m a l  ideal.  

LEMMA 2.11:  Let  R be a ring, let flit be a max imal  ideal o f  R and let M be 

the free R-modu le  R (~) for some posit ive integer n. Then  K is an ~)I-prime 

submodule  o f  M i f  and  only i f  there  exist an integer 1 <_ k <_ n and a basis 

{ra l ,  ra2, • • •, ran} of  M such that  K = 9)Irnl + . . .  + 9Jtrak + R m k + l  + " "  + R m , .  

Proof'. The sufficiency pa r t  is clear.  We now prove the  necessary par t .  Suppose  

t ha t  K is an 9/ l-prime submodu le  of M .  If  n = 1, then  M = R m  and  K = 9)tm 

for some ra c M .  Suppose  tha t  n > 1. Let  { e l , e 2 , . . . , e n }  be the  s t a n d a r d  

basis of M .  For  each 1 < i < n, let 7ri: M ) R be the  h o m o m o r p h i s m  

defined by 7r i ( r l , r2 , . . . , rn )  = ri, where (rl ,r2,. . . ,rn) E M .  If  rr~(K) C_ ffJ/for 

all 1 < i < n, then  ffJlM C_ K C_ ~rl(K)el  + " "  + r n ( K ) e n  C_ 9)IM, so t ha t  

K = 9J/M = 9)Iel + . . .  + 9Jlen. 

Now suppose  t ha t  7rj(K) ~ 91l for some 1 < j < n. Since 9J/M C K ,  i t  

follows t ha t  9)I C_ 71-j ( K )  and hence ~rj (K)  = R. There  exists  an e lement  m l  of 

K such t ha t  7rj(m~) = 1 and  hence {ml ,  e 2 , . . . ,  e j -1 ,  e j + l , . . . ,  en}  is a basis  of 

= ~ ~=1 Rei ,  then  L is a free R - m o d u l e  of rank  n M .  Moreover,  if L n - 1 and 

K = R m l @ ( K n L ) .  Note t ha t  K N L  is an ffJI-prime submodu le  of L. By induct ion  

on n, there  exist  an integer  2 < k < n and a basis  { r a 2 , . . . ,  m n }  of L such t ha t  

K f3 L = 9Jlrn2 + . . .  + ffJlrak + R m k + l  + . . .  + Rrn,~. I t  follows t h a t  K = R m l  + 

9Jim2 + . . .  + ilJlmk + Rrak + l + " "  + R m n  , where { r n 2 , . . . ,  rak, m l ,  mk + l , . . . , mn  } 

is a basis of M .  II 

3.  D i m e n s i o n  o v e r  P r f i f e r  d o m a i n s  

I t  is well known tha t  the  Krul l  d imens ion  of R is the  sup remum of the  Kru l l  

d imension  of RV, where the  s u p r e m u m  is t aken  over all  m a x i m a l  ideals  (or p r ime  
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ideals) ~ of  R. An  analogous result holds for dimensions of modules. The 

following was proved in [8, Proposi t ion 1] and [9, Section 2]. 

PROPOSITION 3.1: Let ~3 be a pr ime ideal of the domain R and M be an R- 

module. Then Q ~-~ Q~ is a bijective inclusion preserving map from the set 

{Q : Q is a W-prime submodule of M with ~ C_ q3} to the set of prime R~- 

submodules of the R~-module MV. The inverse map is L ~-~ L n M. 

PROPOSITION 3.2: For any module M over the domain R, 

D(M) = s u p { D ( M ~ )  : ~ is a maximal ideal of R}. 

Proof: Follows immediately from Proposi t ion 3.1. | 

Note tha t  Proposi t ion 3.2 remains valid if maximal  ideals are replaced by prime 

ideals. 

LEMMA 3.3: Let  R be a valuation domain, n be a positive integer and M be the 

free R-module R (n). Then D(M) = D(R) + n - 1. 

Proof: By Proposi t ion 2.1, D(M) >_ D(R) + n - 1. Thus it remains to prove 

tha t  D(M) < D(R) + n - 1. I f  D(R) = ec, then there is nothing to prove. For 

the rest of this proof, we suppose tha t  D(R) < c~. 

If  D(R) = 0, then R is a field and D(M) = dimR M - 1 = n - 1, because in 

this case every proper submodule of M is prime. 

Suppose tha t  D(R) = d > 0 and the result holds for all valuation domains 

of smaller dimensions. If  n = 1, then M ~ R and hence D(M) = D(R) < 

D(R) + n - 1. Suppose tha t  n > 1 and the result holds for all free R-modules  of 

smaller rank. Let 

O = P o C P l C P 2 C _ ' ' ' C P t  

be a chain of prime submodules of M.  Let P = P1 and ~3 = ( P  : M).  Suppose 

tha t  ~ ¢ 0. Then D(R/q3) _< d -  1 and M / ~ M  TM (R/~3) ('~). Moreover, 

~ M  C P1 and 

P 1 / ~ M  c P 2 / ~ M  c . . .  c P d ~ M  

is a chain of prime submodules of the free R / g - m o d u l e  M/~3M. By induction 

o n d ,  t - l ~ d - l + n - l a n d h e n c e t < d + n - 1 .  

Now suppose tha t  ~I/= 0. Then  M / P  is a finitely generated torsion-free module 

over a valuation domain. By [13, Theorem 4.32], M / P  is projective. Then  

M = P @ P~ for some submodule P~ of M.  Note tha t  P~ is a finitely generated 

projective module over the quasi-local ring R, so tha t  (see [13, Theorem 4.44]) P~ 
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is free. Since P ¢ 0, it follows that  pr ~ R(n') for some natural  number  n r < n. 

Next Pi -- P G (P~ N P~) for each 1 < i < t and 

is a chain of prime submodules of Pr. By induction on n, 

t -  l ~_ D(P ' )  < D(R)  + n' - I < D(R)  + n - 1 ,  

and hence t <_ D(R)  + n - 1. 

In any case, t <_ D(R)  + n - 1. It  follows tha t  D ( M )  <_ D(R)  + n - 1. | 

The next result has been proved by Azizi and Sharif [2, Theorem 3.1] for 

Dedekind domains. 

THEOREM 3.4: Let R be a Priifer domain and M be a finitely generated torsion- 

free R-module. Then D ( M )  = D(R)  + r k M  - 1. In particular, D ( R  (n)) -- 

D(R)  + n - 1. 

Proo~ Note that ,  as R is a domain,  rkR M = rkn.~ M ~  for any maximal  ideal 

9)~ of R. In view of Proposi t ion 3.2, it suffices to show the equality holds when R 

is replaced by R ~ ,  for any maximal  ideal 9Y~. Recall tha t  the localization of any 

Priifer domain at a maximal  ideal is a valuation domain (see [6, Theorem 64]). 

By Lemma 3.3, D ( M ~ )  = D(R~o~) + r k M ~  - 1, as required. | 

COROLLARY 3.5: Let R be a Pr/ifer domain and M be any finitely generated 

R-module. Then D ( M )  <_ D(R)  + # ( M )  - 1. 

Proof: This follows from Theorem 3.4 and the argument  used in the proof  of 

Corollary 2.8. | 

Theorem 3.4 shows tha t  in general there is no relation between D ( M )  and the 

(GabriePRentschler)  Krull dimension of M ,  for a given module M.  For example, 

let R be a Dedekind domain (which is not a field) and let n be a positive integer. 

By Theorem 3.4, D ( R  (n)) = n but  R ('~) has Krull dimension 1. 

THEOREM 3.6: The following statements are equivalent for a Noetherian domain 

R. 

(i) R is a Dedekind domain. 

(ii) D ( R  (n)) = D(R)  + n - 1 for any positive integer n. 

(iii) D ( M )  <_ D(R)  + # ( M )  - 1 for any finitely generated R-module M.  
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(iv) D(R ® R) <_ D(R) + 1. 

In Theorem 3.6, it is clear that (i) ::~ (ii) ~ (iii) ~ (iv). We need a series of 

lemmas for the proof of (iv) =~ (i). 

LEMMA 3.7: For any domain R, 

ht ~ + D ( R / ~  ~ R / g )  < D(R @ R), 

where ~ is a prime ideal of R. 

Proof: Note that if ~ is a prime ideal of R, then ~ @ Q is a W-prime submodule 

of R @ R. Also, any prime submodule of R / ~  ~ R / ~  is of the form Q/(9~ @ ~),  

where Q is a t_~-prime submodule of R @ R with ~ C_ L~. The required result 

follows easily. | 

LEMMA 3.8: The following statements are equivalent for any domain R. 

(i) R is a one-dimensional Priifer domain. 

(ii) D(R@R)  <_ 2. 

Proof: (i) implies (ii) follows from Theorem 3.4. We now show (ii) implies 

(i) by a contrapositive argument, which was illustrated in [10, Example 3.3]. 

Suppose that R is not a Priifer domain. Then there exist elements a, b of R such 

that  (Ra : Rb)+(Rb  : Ra) ~ R. Let flit be a maximal ideal of R such that 

(Rb : Ra) + (Ra : Rb) C_ 97t. By Proposition 2.10, D(R @ R) > 3. It follows that  

(ii) implies (i). I 

LEMMA 3.9: Suppose that (R, ~ )  is a regular local ring of (Krull) dimension 2. 

Then D(R G R) >_ 4. 

Proof: Since R is regular of dimension 2, there exists an R-sequence a, b with 

9Y¢ = Ra + Rb and the quotient rings R/Rb, R/Ra are one-dimensional regular 

local rings (see [6, Theorem 161]), hence they are DVRs. It is well known that  a 

regular local ring is a UFD. 

C L A I M :  ff)~2 contains a prime element. 

JUSTIFICATION: Clearly, a 3 T b 2 is in flit 2. We now show that it is prime. For 

suppose not. Then a 3 -{- b 2 - -  xy for some elements x, y in 9Jr. By passing to 

the ring R/Rb and multiplying x by a unit u (and y by the inverse of u) we can 

suppose without loss of generality that x -- a 2 + rb and y = a + sb for some 
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r,s in R. Now a 3 + b 2 = (a ~ + rb)(a + sb) = a 3 + rab + sa2b + rsb 2. Hence 

b = ra + 8 a  2 -~- rsb. Now, as a, b is an R-sequence 1 - rs belongs to Ra and r + sa 

belongs to Rb so that  1 belongs to Ra + Rb = ~ ,  a contradiction. Thus a 3 ~- b 2 

is prime. The claim has been justified. 

We now construct a chain of prime submodules of length 4 in R @ R. By the 

above claim, ff$[2 contains a prime element p. As a, b is an R-sequence, R(a, b), 

the cyclic submodule of R @ R generated by (a, b), is a 0-prime submodule of 

R @ R. Define 

ApR(a,b) = {(x,y) E R G R:  x b -  ya E pR}. 

It  is easily verified that  ApR(a, b) is a pR-prime submodule of R ~ R. As (p, 0) is 

in ABR(a, b) but not in R(a, b), R(a, b) is strictly contained in ApR(a, b). 

We now show that  hpR(a, b) is strictly contained in fist G ~ .  Suppose that  

(x, y) E ApR(a, b)\(fff~ @ ff~). Without loss of generality, we may assume that  x 

is a unit. Then b E Rp + Ra. I t  follows that  ~ = Ra + Rb = Ra + Rp. As p is in 

~)~2, we get ~)~ = Ra + ~ 2 .  By Nakayama's  Lemma, ~ = Ra, which contradicts 

R is of dimension 2. Therefore, ApR(a, b) is contained in ff$~ G ~ .  As (a,0) is 

in 9~ @ ff)~ and not in ApR(a, b), the above inclusion is strict. From the above 

argument, 

0 C R(a,b) ~ ApR(a,b) c ~ @ ~  C R ~ O ~  

is a chain of prime submodules of length 4 in R G R. | 

In fact, it could be shown that  D(R ~ R) -- 4 in Lemma 3.9. 

THEOREM 3.10: Suppose that R is a Noetherian domain with D(R G R) < 

D(R) + 1. Then R is a Dedekind domain. 

Proo[: By Proposition 3.2, we may assume that  R is a local Noetherian domain 

of dimension at least one with maximal ideal ~ .  If D(R) = 1, then by Lemma 

3.8, we are done. To finish off the proof, we first show that  D(R) -- 2 is not 

possible and then use it to deduce that  D(R) can not be greater than 2. 

Suppose that  D(R) = 2. By assumption, D(R @ R) _< 3. I t  follows from 

Lemma 3.9 that  R is not regular. Thus R has a height one prime ideal ~ such 

that  RV, the localization of R at ~3, is not a DVR. Hence there exist a, b in ~ with 

b E ~ R ~ \ ( a R ~ )  and a E ~3Rv\(bR~). Then (Ra:  Rb) + (Rb: Re) C ~3. By 

Proposition 2.10, D(R@R) > 4+D(R/~3)- I  _> 4. This contradicts D(R@R) <_ 3. 

Therefore D(R @ R) cannot equal 2. 
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Suppose tha t  D(R) > 3. P u t  n = D(R). Let 

0 ~ ~1 ~ ~ c . . .  c ~n-~ c ~ - 1  c ~ .  _- Wt 

be a chain of pr ime ideals of length n in R. Let  R = R/~3n-2. Note t ha t  

ht ~ - 2  + D(/~) = n, ht ~3,-2 = n - 2 and D(/~) = 2. 

By  L e m m a  3.7 and assumpt ion  

ht ~3~-2 + D(R @ [~) <_ D(R @ R) < D(R) + 1. 

Hence ht ~3~-2 + D(/~ @/~) _< (ht ~3n-2 + D(/~)) + 1, i.e., D(/~ @/~) _< D(/~) + 1 

with D(/~) -- 2. We have seen earlier tha t  this is not  possible. Thus  D(R) _> 3 is 

not possible. II 

Proof of Theorem 3.6: (i) ==~ (ii) by Theorem 3.4. (ii) ~ (iii) follows from the 

proof  of Corol lary 2.8. I t  is clear t ha t  (iii) ~ (iv). By  Theorem 3.10, (iv) ~ (i). 
| 

Note tha t  in the above proof, we only need R to be Noether ian  in the implica- 

t ion (iv) ~ (i). I t  is not known whether  Theorem 3.10 holds wi thout  R being 

Noether ian.  

4. D i m e n s i o n  o f  f in i te ly  g e n e r a t e d  m o d u l e s  over  D e d e k i n d  d o m a i n s  

We want  to calculate D(M) in case M is a finitely generated module  over a 

Dedekind domain .  In  view of Proposi t ion  3.2, in calculat ing D(M) we can reduce 

to the case when R is quasi-local, i.e., R has a unique max ima l  ideal. If  I is an 

ideal of an a rb i t ra ry  ring R, then an R-module  X is c a l l e d / - t o r s i o n  if, for each 

x E X ,  there exists a posit ive integer n such tha t  Inx = O. 

LEMMA 4.1: Let  R be a quasi-local ring with unique maximal ideal ~ and let 

an R-module M = M1 @ M2 be a direct sum of submodules M1, M2, where M2 

is flit-torsion. Let ~3 be a non-maximal prime ideal of R. Then L is a ~3-prime 

submodule of M if and only if L = K @ M2 for some ~3-prime submodule K of 

M1. 

Proof." Let L be a ~ - p r i m e  submodule  of M for some pr ime ideal ~3 ¢ 9:1I. 

For each x E M2, there  exists a posit ive integer n such t ha t  93~x = 0 c L, 

so t ha t  x C L. Hence M2 C_ L and L = K @ M 2 ,  w h e r e K  = L N M 1 .  Since 

M1/K TM M/L,  it follows tha t  K is a ~ - p r i m e  submodule  of/I//1. 

Conversely, if L = K @ M2 for some ~3-prime submodule  K of M1, then 

M / L  ~- M1/K gives tha t  L is a ~ - p r i m e  submodule  of M.  II 
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LEMMA 4.2: Let R be a quasi-local ring with unique maximal ideal 9"2 and let 

an R-module M = Mi  @ M2 be a direct sum of finitely generated submodules 

M1, M2, where M2 is 9Jr-torsion. Then D ( M )  = max{D(Mi) ,  # (M)  - 1}. 

Proof'. Because Mi is a homomorphic image of M we see that  D(Mi)  <_ D(M) .  

Moreover, D ( M )  > D(M/gJtM)  = #(M/gJtM) - 1. But #(M/gJtM) = #(M) by 

Nakayama's  Lemma. Hence D ( M )  _> #(M)  - 1. Let 

Lo C+ Li  C ""  C Lt 

be any chain of prime submodules of M,  for some non-negative integer t. If  

(Lo : M) = ffft, then t _< #(M)  - 1. Suppose that  (Lo : M) = ~3 for some prime 

ideal ~ ¢ 9)I. By Lemma 4.1, Lo = K0 • M2 for some ~-pr ime  submodule K0 

of Mi.  Moreover, Li = Ki G Me for some prime submodule Ki of M1 for each 

1 < i < t. Clearly, 

Ko C Ki  C . . .  C Kt 

is a chain of prime submodule of Mi.  Hence t < D(Mi) .  It  follows that  D ( M )  <_ 

max{D(Mi) ,  # (M)  - 1}. | 

THEOREM 4.3: Let R be a domain, let n be a positive integer, let ~ 

(1 <_ i <_ n) be distinct maximal ideals of R and let an R-module M = 

M '  (~ Mi  @ "" • G M~ be a direct sum of a finitely generated torsion-free sub- 

module M '  and finitely generated ~3i-torsion submodules /14/(1 < i < n). Then 

D ( M )  -- max{D(M' ) ,  p(M/~31M) - 1 , . . . ,  #(M/~3~M) - 1}. 

Proo~ Let !13 be any maximal ideal of R. Suppose that  ~ # ~ i  (1 < i < n). 

Then i ~  = M~ and hence n(Mq3) -- D(M~)  <_ n ( i ' )  by Proposition 3.2. 

Now suppose that  ~3 = ~3i for some 1 < i < n. Then M~ --- M ~ G M i  and 

hence D(M ~)  = max{D(M~) ,  #(Mv~/~3M~) - 1} by Lemma 4.2. But D(M~)  <_ 

D(M' )  and M~/~3M~3 ~ M / ~ M .  By Proposition 3.2, we have proved that  

D ( M )  <_ m a x { D ( i ' ) ,  # ( i / ~ 3 1 M )  - 1 , . . . ,  # ( i / ~ 3 , i )  - 1}. 

Conversely, D(M')  <_ D ( M )  because M '  is a homomorphic image of M.  

Moreover, for each 1 < i < n, p ( M / q 3 i i )  - 1 = D(M/~3iM)  <_ D(M) .  The 

result follows. | 

COROLLARY 4.4: Let R be a domain, let n be a positive integer, let ~3i (1 < i < 

n) be distinct maximal ideals of R and let an R-module M = M '  ~ Mi  @ ' "  • M~ 
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be a direct sum of a free submodule M'  of finite rank k and finitely generated 

~3i-torsion submodules Mi(1 < i < n). Then 

D ( M )  = max{D(M' ) ,  #(M1) + k - 1 , . . . ,  #(M~) + k - 1}. 

Prook For each 1 <_ i < n, M/q3 iM ~- (R/~3i) (k) ~ (Mi/~3iMi) and hence 

#(M/~3iM) = k + # ( M i / ~ i M i ) .  Since Mi is ~i-torsion, it follows that  

# ( M i / ~ i M i )  = #(Mi).  Apply Theorem 4.3. | 

We now apply Theorem 4.3 and Corollary 4.4 to find D ( M )  in case M is a 

finitely generated module over a Dedekind domain. 

THEOREM 4.5: Let R be a Dedekind domain and let M be a finitely generated 

R-module. Then M = M '  @ M1 ~ . . .  (~ Mn is a direct sum of a torsion-free 

submodule M '  and ~3i-torsion submodules Mi(1 < i < n) for some positive 

integer n and distinct maxima/ ideals  ~i(1  <<_ i < n). Moreover, 

D ( M )  = m a x { r k M '  + #(Mi) - 1 : 1  < i < n}. 

Proof: The first part  is welt known. If  M '  = 0, then rk M '  -- 0 and the result 

follows by Corollary 4.4. Suppose that  M '  ~ 0. By [4, Theorem 6.11], there 

exist a positive integer k and an ideal I of R such that  M '  - R (k-D $ I .  For 

any maximal ideal ~ of R, I / ~ I  ~- R / ~  (see [4, Corollary 6.5]) and M' /q3M'  ~- 

(R/qJ) (k). By the proof of Corollary 4.4, # ( M / ~ i M )  = k + #(Mi)  = r k M '  + 

#(Mi) for all 1 _< i <_ n. Also, Theorem 3.4 gives that  D(M' )  = r k M ' .  By 

Theorem 4.3, D ( M )  = m a x { r k M '  + #(Mi) - 1 : 1  < i < n}. | 

Next we prove that  if R is a Dedekind domain, then the lower bound in 

Proposition 2.2 is attained. 

COROLLARY 4.6: Let R be a Dedekind domain and let M be a finitely generated 

R-module. Then D ( M )  = s u p { D ( R / ~ )  + rk~ M - 1 : ~ is a prime ideal of  R 

and ann(M) _C 9} .  

Proob As in Theorem 4.5, M = M ' ~ M 1 G . . . ~ M n  is a direct sum of a torsion- 

free submodule M '  and ~3i-torsion submodules Mi (1 < i < n), for some positive 

integer n and distinct maximal ideals ~ ( 1  <_ i _< n). Suppose that  M '  = 0. 

Let ~ be any prime ideal of R such that  ann(M) C_ ~ .  Then ~ = ~ i  for some 

1 < i < n. In this case, D(R/q3) + r k  v M -  1 -- O + # ( M / ~ M )  - 1. By Theorem 

4.3, 

D ( M )  = sup{D(R/q3)+rk~  M - 1 :  ~ is a prime ideal of R and ann(M) C_ ~3}. 
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Now suppose that  M '  # 0. In this case, ann(M) = 0. Let ~ be a prime ideal 

o fR.  I f ~  = 0, then D ( R / ~ ) + r k v ( M  ) - 1  = r k M ' ,  because D(R) = 1. Suppose 

that  9t3 = ~3i for some 1 < i < n. Then D(R/~3) = 0 and rk v M = #(M/9t3M ). 
Finally, suppose that  ~ is a maximal ideal of R such that  ~3 # ~3i (1 < i < n). 

Then D(R/~3) = 0 and M/~3M ~ M'/~3M', so that  rk• M = rk M' .  We have 

proved that,  for any prime ideal ~ of R, 

rk M t if ~ = 0, 
D(R/~3)+rk v M - I =  # ( M / ~ 3 M ) - I  i f ~ 3 = ~ i  for s o m e l < i < n ,  

rk M '  - 1 otherwise. 

But r k M '  = D(M') by Theorem 3.4. By Theorem 4.3, D(M) = 
sup{D(R/~) + rk v M - 1: ~ is a prime ideal of R and ann(M) C_ ~} .  | 

THEOREM 4.7: Suppose that R is a Noetherian domain. Then R being Dedekind 
is equivalent to 

D(M) = sup{D(R/~3)+rk~ M - 1 :  ~ is a prime ideal of R and ann(M) C_ ~3}, 

for any finitely generated R-module M. 

Proof: The necessary condition is just Corollary 4.6. For the converse, put 

M = R (2). Then D(M) = D(R) + 1. Now, R is Dedekind follows from Theorem 

3.6. | 

5. D i m e n s i o n  o f  f ree  m o d u l e s  

Let R be a Noetherian one-dimensional domain and ~ be any maximal ideal of 

R. The local domain R~ is one-dimensional and Cohen [3, Theorem] proved that  

there exists a positive integer k such that  every ideal of R~  can be generated by 

k elements. 

Recall that  from section 1, ~(R~3) is defined to be the least positive integer k 

such that  every ideal of R~ can be generated by k elements. Also, we define 

u(R) = sup{t~(R~) : ~ is a maximal ideal of R}. 

Note tha t  v(R) is a positive integer or v(R) = co. In [3, pp. 39-40], an example 

is given of a Noetherian one-dimensional domain R such that  v(R) = co. Note 

that  a Noetherian domain R is Dedekind if and only if R is one-dimensional and 

v ( R )  = 1. 

For any real number r, we let [r] denote the greatest integer s such that  s < r. 

Given an integer t, we write ~(R) I t if v(R) is a positive integer and , (R)  divides 
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t; otherwise, we write u(R)  ~ t. Moreover, if u(R)  = ~ ,  we define [n/u(R)] = 0 

for any positive integer n. We shall prove Theorem 5.1 in a series of lemmas. 

THEOREM 5.1: Let  R be a Noetherian one-dimensional domain and let n be a 

posit ive integer. Then 

2n - n / u ( R )  i f  u (R)  In,  
D(R(~))  = 2n - [n/v(R)] - 1 i f  u (R)  { n. 

We deal first with the case v (R)  = oc. 

LEMMA 5.2: Let  R be a Noetherian one-dimensional domain. Then, u (R)  > n 

i f  and only i f  D ( R  (n)) = 2n - 1. 

Proof: Let M = R (n). By Theorem 2.7, D ( M )  < 2 n - 1 .  Suppose tha t  u(R)  > n. 

Then there exists a maximal  ideal ~ of R such tha t  u ( R ~ )  -- k >_ n. Let I be 

an ideal of R ~  such tha t  I can be generated by k, but  no fewer, elements. Then  

I = R~Ial + R~a2 + . . .  + R ~ a k  for some elements ai (1 < i < k) of R. Let 

K = { ( r l , r 2 , . . . , r , )  C M :  a i r 1 +  a2r2 + ' . .  + anr ,  = 0}. 

By Lemma 2.9, K is a 0-prime submodule of M and ht K = n - 1. Moreover, if 

ri E R (1 < i < n) and alr l  +a2r2 + " . +  anrn = 0, then ri is not  a unit  in RV 

and hence ri E ~3 for 1 < i < n; tha t  is, K C ~ M .  It  follows tha t  

D ( M )  >_D(M/9~M) + ht(9~M), 

> _ D ( M I ~ M )  + 1 + ht K,  

___(n- 1) + 1 + ( n -  1) = 2 n -  1. 

Thus D ( M )  = 2n - 1. 

Conversely, suppose tha t  D ( M )  = 2n - 1. Let 

O= Po ~ PI ~ P2 ~ " "  ~ P2~-I  

be a chain of prime submodules of M.  From Lemma 2.6 and D ( M )  = 2n - 1, 

O = P o C + P 1 C P 2 C ~ . . . ~ P , _ I  

is a homogeneous chain of 0-prime submodules of M;  and 

Pn C+ P~+I C+ P,+2 ~ " "  C+ P2 , -1  

is a homogeneous chain of 9JLprime submodules of M,  where flit is a maximal  

ideal. As the length of any homogeneous chain of ffJLprime submodules of M is 

at most  n - 1, we have P,~ = 9)lM. 
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By Lemma 2.9, there exist elements ai E R(1 < i _< n) and a basis 

{Ul ,U2 , . . . , un} ,  which we may assume to be the s tandard  basis, of M such 

tha t  

Pn-1  = ( ( r l ,  r 2 , . . . ,  rn) • M :  air1 + a2r2 + " "  + earn = 0}. 

Fix an integer i between 1 and n. Let Ii = R a l  + . .  • + R a i _ l  + Rai+l  + . . .  + Ran 

and r E (Ii : Rai ) .  Then 

rai  = 81al ~- • • • ~- 8 i - l a i - 1  ~- 8i+lai+l -~- • • - -~ 8nan 

for some sj E R (1 < j _< n, j ¢ i). I t  follows tha t  

( s l , . . . ,  si-1,  - r ,  s i + l , . . . ,  sn) • Pn-1  C_ 9~M, 

n I Ra i )  C 9~. Let I R a l + R a 2 +  +Ra,~.  It  is so tha t  r e if2. Hence ~ i = 1 (  i : . . . .  

easy to check tha t  I ~  can be generated by n, and no fewer, elements over R ~ .  

It  follows tha t  v(R) >_ u ( R ~ )  >_ n. | 

Note tha t  in proving Lemma 5.2, we do not need R to be Noetherian.  In view 

of Lemma 5.2, Theorem 5.1 is true for v ( R )  = c~. We now suppose tha t  p(R)  

is a positive integer. The next step is to reduce to the local case. It  will be 

convenient to call temporar i ly  a Noetherian one-dimensional domain R g o o d  if 

R satisfies the conclusion of Theorem 5.1. 

LEMMA 5.3: Suppose  that  R is a Noether ian one-dimensional  domain wi th  u (R)  

< oc and the local domain R ~  is good for every  m ax im a l  ideal ~3 o f  R .  Then R 

is good. 

Proo~ Suppose tha t  v ( R )  = k (so tha t  k is a positive integer). There exists a 

maximal  ideal ~3 of R such tha t  v ( R ~ )  = k and v (R~)  _< k for every maximal  

ideal ~Q. Suppose tha t  k [ n. Let M -- R (n). By hypothesis,  D ( M V )  = 2n - n / k .  

Suppose tha t  there exists a maximal  ideal ~ of R such tha t  v ( R ~ )  < k. Then 

n / k  < n / u ( R ~ )  and hence n / k  <_ [n / v (R~) ] .  By hypothesis, 

2n - n / u ( R ~ )  if v ( R ~ )  [ n, 
D ( M ~ )  = 2 n -  [n / v (R~)]  - I i f v ( R ~ ) ~ n .  

Hence D ( M ~ )  < 2n - n / k .  By Proposi t ion 3.2, D ( M )  = 2n - n / k ,  as required. 

Now suppose tha t  k ~ n. By hypothesis, D ( M v )  -- 2n - In~k] - 1. Again let 

be a maximal  ideal of R such tha t  v ( R ~ )  < k. Then In~k] < n / k  < n / u ( R ~ ) .  

But,  by hypothesis, 

2n - n / u ( R ~ )  if v ( R ~ )  ] n, 
D ( M ~ )  = 2 n -  [n / v (R~)]  - I i f v ( R ~ ) ~ n .  
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Hence D ( M ~ )  < 2n - [n/k] - 1. By Proposi t ion 3.2, D ( M )  = 2n - [n/k] - 1. 

1 

We shall need the following result  to prove Theorem 5.1 holds for local domains.  

LEMMA 5.4: Let  R be a Noetherian one-dimensional local domain with unique 

m a x i m a / i d e a l  9~ and v (R)  = k < oc. Let  n be a posit ive integer. Write 

n = k q + r  for some non-negative in tegersq,  r with 0 <<_ r < k. Le t  K be a 

0-prime submodule  o f  R (n) with K C_ 9~R(n). Then ht K <_ n - q, i f  k I n, and 

ht K < n - q - 1, otherwise. Furthermore, the m a x i m u m s  are attainable. 

Proo~ Let M = R  (n). Suppose tha t  k = l .  T h e n R i s a D V R a n d n = q .  We 

have ht K + 1 + D ( M / 9 ) t M )  < D ( M ) .  As M / ~ M  is an n-d imens ional  vector 

space over R/f f2,  D ( M / 9 ~ M )  = n - 1. Since R is a DVR, by Theorem 3.4, 

D ( M )  = n. I t  follows tha t  ht K = 0. We have shown tha t  ht K _< n - q when 

k = l .  

Suppose tha t  k > 2 and  n < k. Then  q : 0. We have h t K + I + D ( M / ~ M )  <_ 

D ( M ) .  By Theorem 2.7, D ( M )  _< 2 n - 1 .  Hence h t K + l + n - 1  < 2 n - l ,  

which gives ht K _< n - 1. 

From now on we may assume tha t  k _> 2 and  n > k. By Lemma 2.9, we can 

suppose wi thout  loss of generali ty tha t  there exists an m x n mat r ix  A over R, 

for some integer 1 < m _< n, such tha t  

r l  

r2 
g = { ( r l , r 2 , . . . , r n )  e R(n ) :  A . = 0} 

rn  

and  ht K -- n - m. 

We now show tha t  if k I n, then  ht K < n - q. The other  case k ~ n can be 

proved in a similar fashion. Suppose tha t  k ] n and ht K > n - q. Then  m < q. 

Let I be the ideal generated by all the entries of row 1 of A. As ~,(R) -- k, I 

is generated by k of the entries in row 1 of A. Hence there exists an invertible 

n x n mat r ix  E1 over R such tha t  the last n - k entries of row 1 of AE1 are all 

zero. In  other words, if AE1 -- (bij), then blj = 0 for k + 1 _< j < n. Similarly, 

there exists an invertible n x n mat r ix  E2 over R such tha t  

(i) the last n - k entries of row 1 of AE1E2 are all zero, 

(ii) the last n - 2k entries of row 2 of A E I E 2  are all zero. 

By repeat ing the above process, there exists an invertible n x n mat r ix  E over 

R such that ,  for d -- 1, 2 , . . . ,  m, the last n - dk entries of row d of A E  are all 

zero. 
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Write A E  = [B I C], where B 

zero mat r ix .  In par t icular ,  all 

zero. Write 

E 

which is the n t h  column of E.  

is / T \  mat r ix  and C is 
[ 

an m x (m~) an m x (n - m1¢) 

the entries in the n th  (last) column of A E  are 

On-- 1 

Cn 

Then  ( C l , C 2 , . . . , C n )  is in K .  As K C_ fiNR("), 

ci c 9)I for all 1 < i < n. This  implies tha t  det E E fiN, which contradicts  E is 

invertible. Therefore  ht K < n - q. 

We prove the last assert ion by construct ing a 0-prime submodule  of R (n), which 

is contained in fiNR (n), of height n -  q, if k I n, and of height n - q -  1, otherwise. 

As u(R)  = k, there exist al,  a 2 , . . . ,  ak c R,  such tha t  J = R a l  + Ra2 + . . .  + Rak  

k Rai)  C fiN, and J cannot  be genera ted by less than  k elements.  Then  y~i=l(J i  : 

where Ji = ~k~ =1 R a j  for 1 < i < k. Let  

K = { ( x l , x 2 , . . . , x ~ )  C R (~) : 

a lx ik+ l  + a2x/k+2 + " -  + akx(i+l)k = 0(0 < i <_ q - -  1) and 

a l X q k + l  + a2Xqk+2 + "'" -t- a rXr  ---- 0}. 

Note tha t  K C_ fiNR(~). By  L e m m a  2.9, K is a 0-prime submodule  of R (n) and 

ht K = { n - q if k l n, | 
n - q - 1  i f k ~ n .  

LEMMA 5.5: With  the notation of  L e m m a  5.4, 

2 n -  n / u ( R )  i f  ~(R)  I n, 
D(R('~)) = 2n - [n/u(R)] - 1 i f  u (R)  { n. 

Proo~ Let M =  R (n) and u(R) = k < oc. By Theorem 2.7, D ( M )  <_ 2 n - 1  

< oc. Let  D ( M )  = t and let 

Ko ~ K 1  ~ K :  ~ . . .  ~ K t  

be a chain of pr ime submodules  K~(1 < i < t) of M .  As R is a one-dimensional  

local domain  with unique max ima l  ideal fiN, for each 1 < i < t, Ki  is fiN-prime 

or 0-prime. Moreover,  K t  is fiN-prime, Ko = 0 and Ko is 0-prime. There  exists 

0 < s < t such t ha t  Ki  is 0-prime if 0 < i < s and fiN-prime if s + 1 < i < t. 

Consider the fiN-prime submodule  K8+1. By Propos i t ion  2.11, there exist a basis 
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{ u i , u 2 , . . . , u n }  and a positive integer 1 < h _< n such tha t  K s +  1 = !))?iUl ~- 

• . .  + 92Uh + RUh+l  + " -  + R u n .  Note tha t  M / K s + l  ~- ( R / f f 2 )  (h), so tha t  

D ( M / K s + i )  = h - 1. 

Now consider the 0-prime submodule K s .  By Lemma 2.9, there exists an m x n 

matr ix  A over R, for some integer 1 _< m < n, such tha t  

Ks -- {rlUl + r2u2 -~ . ."  ~- rnUn E M : A (ri) r2 = 0} ,  

and ht K s  = n - m .  

For i = 1, 2 , . . . ,  n - h, let Qi = ~)~ui + . . -  + ~)~Uh+i • RUh+i+l  + "'" + R u n .  

Clearly, each Qi(1 < i < n - h) is an 9Y~-prime submodule of M with Q~ c_ Ks+i .  

Note tha t  Q n - h  = ~ ; t M  and 

Q , - h  c Qn-(h+l )  c .--  C Q1 c Ks+l .  

Hence, ht Ks+i  >_ (n - h) + ht Qn-h .  Write n = kq'  + r ' ,  where q', r '  are non- 

negative integers with 0 < r'  < k.  By Lemma 5.4, 

{ : - q ' + l  i f  k l n,  
ht Q n - h  = q' if k { n. 

As s = h t K s  = n -  m and h t K s + i  = s + 1, 

m <  { h + ( q ' - n )  i f k l n ,  
- h + ( q ' + l - n )  i f k ~ n .  

In any case, m < h. 

Write A = [B I C], where B is an m x h matr ix  and C is an m x (n - h) matrix.  

Let  
r l  
r2 

K -- { r lu i  + r2u2 + . . "  + rhUh E M : B . = 0}. 

rh 

By Lemma 2.9, K is a 0-prime submodule of height h - m in R u i  + . .  • + RUh,  

and K is contained in ff2ul + . . .  + ~ U h .  Write h = kq + r,  where q, r are non- 

negative integers with 0 _< r < k. By Lemma 5.4, m _> q, if k I h and m _> q + 1, 

otherwise. Hence ht Ks _< n - q, if k I h and ht K < n - q - 1, otherwise. By 

an argument  used in the last par t  of the proof  of L e m m a  5.4, we can construct  a 

0-prime submodule P in M such tha t  
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(i) P is contained in 92itul + . . .  + ~IJ~U h ÷ RUh+l ÷ RUh+2 ÷ "'" ÷ Ru,~, and 

(ii) h t P =  n - q, if k I h, and h t P  = n - q - 1, otherwise. 

Therefore 

q - 1  i f k ~ h .  

It  follows tha t  

h + n - h / k  i f k l h ,  
t = ( h - 1 ) + l + h t K s =  h + n - [ h / k ] - I  i f k ~ h .  

Let f :  {1, 2 , . . . ,  n} > N be the mapping  defined by 

h + n - h / k  i f k l h ,  
f ( h ) =  h + n - [ h / k ] - I  i f k { h .  

It  is easy to check tha t  f is increasing and hence 

2 n -  n/k  if k I n, | 
t = f ( n ) =  2n [n/k] 1 if k e n .  

Proof of Theorem 5.1: By Lemmas  5.2, 5.3 and 5.5. | 

The proof  of Theorem 5.1 shows that  if R is a Noetherian one-dimensional 

domain and n is a positive integer, then D(R ('~)) = D((R/9~) (~)) + h t ( ~ R  ('~)) 

for some maximal  ideal O)~ of R. 

We end this section with a characterizat ion of u(R). 

THEOREM 5.6: Let R be a Noetherian one-dimensional domain and n be a 

positive integer. The following statements are equivalent. 

(i)  u ( R )  = n .  

(ii) D(R (k)) = 2k - 1 for k = 1, 2 , . . . ,  n;  and D(R (k)) < 2k - 1 for all k > n. 

Proof." (i)=>(ii) By Theorem 5.1. 

(ii)=~(i) Let m = u(R). Suppose tha t  m > n. Then,  by (ii), D(R (m)) < 2 m -  1, 

which contradicts Theorem 5.1. Thus m < n. Suppose tha t  m < n. By Theorem 

5.1, D(R ('~)) < 2n - 1, which contradicts (ii). Thus m -- n. | 

COROLLARY 5.7: The following statements are equivalent for a Noetherian one- 

dimensional domain R. 

(i) u(R) = co. 

(ii) D(R (k)) = 2k - 1 for every positive integer k. 

Proof." By Theorems 5.1 and 5.6. | 
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6. An example 

In section 2, we promised to give an example of a domain R and a finitely 

generated R-module M such that D(M)  = t t (M)D(R)  + #(M) - 1. We do this 

next. Recall that a non-zero integer d is called sq u a re - f r e e  if d ~ Zp 2 for every 

prime p in Z. Clearly, if d is a square-free integer then d ~ 0(rood4). Let d be 

a square-free integer and let R denote the subring Z[vfd] = {a + bv~ : a, b e Z} 

of the field C of complex numbers. Then R is a Noetherian one-dimensional 

domain. If d = 2 or 3(mod4), then R is a Dedekind domain and D(R ('~)) = n 

for all n > 1. 

THEOREM 6.1: Let d be a square-free integer such that d - l (mod4) and let R 

be the ring Z[v~]. Then D(R (2)) = 3 and D(R  ('~)) < 2n - 1 for ali n >_ 3. 

Proof.'. Define ~v: R ---+ Z /Z2  by ~(a + bv/-d) = (a + b) + Z2 for all a, b E Z. It 

is easy to check that ~ is a ring epimorphism. If fiR is the maximal ideal ker ~, 

then 9Y~ = {a + bx/~ : a, b E Z, a + b E Z2} = R2 + R(1 + v/-d). It is also easy to 

check that  

( R 2 : R ( 1  + vfd)) + (R(1 + vfd): R2) C_ fiR. 

Then v(R) > v ( R ~ )  > 2. By Lemma 5.2,  D(R (2)) = 3. 

Suppose that D(R (3)) = 5. By Lemma 5.2, there exist elements al ,  a2, a3 in R 

such that 

(*) (Ra2 + Ra3 : Ral) + (Ral + Ra3 : Ra2) + (Ral + Ra2 : Ra3) # R. 

But R = Z $ Zvrd, so that R is a free Z-module of rank 2 and hence there exist 

mi C Z(1 < i < 3) such that 

m l a l  + m 2 a 2  -~ m 3 a 3  = O. 

Without loss of generality, the integers ml ,  mR, m3 are coprime and hence Z = 

Zml  + Zm2 + Zm3. Thus 

3 3 

1 E Zml  + Z m 2 +  Zm3 C Z ( ( Z R a j ) :  Rai), 
i----1 J=~ 

3 3 Ra~) R, contradicting (*). Thus D(R (3)) < 5. and we have y]~=l ( ( ) -~1  Ray) :  = 

Together with Proposition 5.6, we have D(R (n)) < 2n - 1 for all n > 3. II 
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