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ABSTRACT

In this paper, we study the dimension of a module over a commutative
ring, which is defined to be the length of a longest chain of prime submod-
ules. This notion is analogous to the usual Krull dimension of a ring. We
investigate how some bounds on the dimension of modules are related to
the structure of the underlying ring. The dimension of finitely generated
modules over a Dedekind domain is also studied. By examining the struc-
ture of prime submodules, a formula for the dimension of a free module
of finite rank, over a Noetherian one-dimensional domain, is obtained.

1. Introduction

Let R be a commutative ring with identity and let M be a unital R-module. A
submodule P of M is called a prime submodule of M if

(i) P#£ M, and

(i) whenever r € R and m € M\P with rm € P, then rM C P.

Note that if P is a prime submodule of M, then (P : M), the annihilator
of M/P over R, is a prime ideal. In that case, we say P is a (P : M)-prime
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submodule of M. Prime submodules have been studied extensively by many
authors (for example, see 1], [2], [5], [7], [8], [10], [11], and [12]).

Suppose that the module M contains a prime submodule P. Then the height
of P, denoted by ht P, is the greatest non-negative integer n such that there
exists a chain of prime submodules of M

PPCPC---CP, =P,
and ht P = oo if no such n exists. The dimension D(M) of M is defined by
D(M) = sup{ht P : P is a prime submodule of M}.

D(R) is just the usual (Krull) dimension of R. In this paper, we investigate
how the bounds on the dimension of modules are related to the structure of the
underlying ring. By characterizing prime submodules of R™), we are able to work
out an explicit formula for D(R(™), where R is a Noetherian one-dimensional
domain. There are already some known results (see {1] and [10]) about the
dimension of modules. In [1], chains of certain prime modules were studied. A
lower bound for D(M) was given in [10].

Before we describe the main results of this paper, we first fix some notation.
All the rings in this paper are assumed to be commutative with identity, not
necessarily Noetherian, and modules will be unital modules. A local ring means
a commutative Noetherian ring with a unique maximal ideal.

Let R be a ring and M be an R-module. It is clear that

D(M) = sup{D(M/BM) : P is a prime ideal of R}.

In view of this, we shall work mostly with domains.

Let R be a domain. We shall use R to denote the free R-module of rank n,
where n is a positive integer. Sometimes we write R @ R instead of R®. Let G
and H be submodules of an R-module M. We define (G : H) to be the ideal

{re R:rH CG}.

If N is an R-submodule of M, then (N : M) is the annihilator of the quotient
R-module M/N. In particular, the annihilator of M is (0 : M). Sometimes, we
write ann(M) instead of (0: M). If M is torsion-free, then the rank of M is the
dimension of the vector space FM = F ®g M over F, where F is the field of
fractions of R. The rank of M is denoted by rk M. If the base domain is not
clear, we shall use rkg M to denote the rank of M over R.
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Let R be a ring, not necessarily a domain, and 8 be a prime ideal of R. Let
M be an R-module. We define Kp(M) to be the following R-submodule of M:

{m e M :cm e PM for some ¢ € R~ P}

It is easily shown that M = Kyp(M) or Ky(M) is a B-prime submodule of M.
Hence M = Kg@(M) or M/Kg(M) is a non-zero torsion-free R/B-module. The
B-rank of M, denoted by rkyg M, is defined by

In case R is a domain and M is an R-module, Ko(M) is the torsion submodule
of M, and tko M = rkp(M/Ky(M)). We use u(M) to denote the least number
of generators required to generate M. Let P be a maximal ideal of R. We shall
denote by v(Ryp) the least positive integer k such that every ideal of Ry can be
generated by k elements. If no such k exists, we put ¥(Ryp) = co. Next we define

v(R) = sup{v(Rg) : P is a maximal ideal of R}.

Now we have all the necessary notation to describe the main results of this
paper.

As mentioned earlier, there is a lower bound for D(M) (see [10]). It is natural
to ask whether there is any upper bound for D(M). It turns out that there is
and one is given in Corollary 2.8, namely D(M) < u(M)D(R) + u(M) — 1. In
general, this bound can be strict (see Theorem 6.1). In order to see whether the
above upper bound can be improved, we restrict R to be a Priifer domain. For
any finitely generated module M over a Priifer domain R, we have the following
sharper upper bound for D(M) (see Corollary 3.5):

D(M) < D(R) + u(M) — 1.

The converse holds when R is Noetherian. In fact, for a Noetherian domain
R, the following statements are equivalent (see Theorem 3.6):

(i) R is a Dedekind domain.

(ii) D(R™) = D(R) + n — 1 for any positive integer n.

(iii) D(M) < D(R) + u(M) — 1 for any finitely generated R-module M.

(ivy DIR® R) < D(R) + 1.

In section 4, we carry out a detailed study of dimension of finitely generated
modules over a Dedekind domain. There is another characterization of Dedekind
domains in terms of the dimension of the finitely generated modules. It turns
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out that for a Noetherian domain R to be Dedekind, it is necessary and sufficient
that the dimension of every finitely generated R-module M must be given by
D(M) = sup{D(R/P) + rkgg M — 1: P is a prime ideal of R and ann(M) C P}
(see Theorem 4.7).

Let R be a Noetherian one-dimensional domain. If M is a finitely generated
torsion-free R-module, then one would expect D(M) to depend on the structure
of M and properties of R. However, if the module M is the free R-module R(™,
for some positive integer n, then D(M) ought to depend only on n and R. We
shall show that this is indeed the case. More precisely, D(R(™) is given by (see
Theorem 5.1):

ey = {27y
n—[m]—l if v(R) { n.

2. Bounds on the dimension

In the first half of this section, we look at some bounds for the dimension of
modules. Later, we study the structure of 0-prime submodules of a free module
over a domain. The following result ({10, Theorem 3.4]) gives a lower bound for
D(M).

PROPOSITION 2.1: Let R be a domain and let M be a non-zero finitely generated
torsion-free R-module. Then D(M) > D(R) + kM - 1.

Note that if R is any domain with field of fractions K # R and M is the R-
module K, then 0 is the only prime submodule of M so that D(M) = ht0 = 0,
rk M = 1and D(R) > 1, so that D(M) < D(R)+rk M —1. Thus, Proposition 2.1
requires the module M to be finitely generated. Next we generalize Proposition
2.1.

PROPOSITION 2.2: Let R be a ring and let M be a non-zero finitely generated
R-module. Then D(M) > sup{D(R/B) +rkg M — 1 : P is a prime ideal of R
and ann(M) C B},

Proof: Let B be any prime ideal of R such that ann(M) C P with Kp(M)
as defined in section 1. Note that M/Kgp(M) is a torsion-free (R/9)-module.
Suppose that M = Kyg(M). Since M is finitely generated, it follows that dM =0
for some d € R~P (see [1, Corollary 1.2]), and hence d € ann(M) C ‘B, a
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contradiction. Hence M # Kg(M). Clearly,
D(M) 2D(M/Kg(M)),
>D(R/P) + rkpyqp(M/Kp(M)) — 1, by Proposition 2.1,
ZD(R/‘B) + I'kgp M-1.
The result follows. ]

We shall see in Corollary 4.6 that the lower bound in Proposition 2.2 is attained
for finitely generated modules over a Dedekind domain. It will be proved shortly
that Proposition 2.2 holds when the supremum is taken over all maximal ideals,

not necessarily containing ann(M). To do that, parts of the following result will
be needed.

PROPOSITION 2.3: Let R be a ring, M be a maximal ideal of R, and M be a
non-zero finitely generated R-module. Then the following statements hold.

(1) Kop(M) = IMM.

(ii) ann(M) C 9 if and only if MM # M.

(iil) rkon M = u(M/MM).
If, in addition, R is a domain but not a field, then D(M) > tk(M/T) = rko M,
where T = Ky(M) is the torsion submodule of M.

Proof: The necessary part of (ii) follows from an argument in the proof of [1,
Corollary 1.2] or Nakayama’s Lemma. The other assertions are easy consequences
of the definitions. 1

COROLLARY 2.4: Let R be a ring and let M be a non-zero finitely generated
R-module. Then

D(M) > sup{p{M/9MM) — 1 : M is a maximal ideal of R}.

Proof: Let M be a maximal ideal of R. If M = MM, then u(M/MM) =
1#(0) = 0. So that D(M) > pu{M/MMM) — 1. Now, suppose that M # M. By
Proposition 2.3 (ii), ann(M) C 9. It follows from Proposition 2.2 that D(M) >
D(R/M) + rkon M — 1. As 901 is maximal, D(R/91) = 0. Note that, by Propo-
sition 2.3 (iii), rkoy M = p(M/9MM). Consequently, D(M) > pu(M/MM) — 1.
]

Definition 2.5: Let P be a prime ideal of a ring R and M be an R-module. A
chain of prime submodules of M

PPCPCPC - CH

=
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is homogeneous if each of Py, Py, ..., Py is a P-prime submodule of M.

Suppose that P and @ are B and £-prime submodules of M, respectively,
with P C Q. Then ‘B C 3. From this observation, we see that a chain of prime
submodules of M is made up of homogeneous chains of prime submodules.

LEMMA 2.6: Let M be a finitely generated torsion-free module over a domain
R. Then the length of any homogeneous chain of prime submodules of M is at
most p(M) — 1.

Proof: Let
PGP CPRC---CH

be a homogeneous chain of {B-prime submodules of M. Note that M/ Py, Py/ P,
Py/Py, ..., Pyg/P, are torsion-free modules over R/9. As M is finitely generated,
M/P, is also finitely generated. Hence Pi/Py, P2/ Py, ..., Py/Fy all have finite
rank over R/PB. Now

k
I‘kR/m M/PO =rkR/gp M/Pk + ZrkR/m -Pi/IDi—I

t=1

>k +1.

Clearly, rkp/p M/Py < u(M/Po) < p(M). Therefore k < u(M) — 1. |

THEOREM 2.7: Let M be a finitely generated torsion-free module over a domain
R. Then D(M) < u(M)D(R)+u(M)—1. In particular, D(R™) < nD(R)+n~—1.

Proof: The last assertion follows immediately from the first. We now prove the
first part.

If D(R) is infinite, then there is nothing to prove. We may assume that D(R) >
0 is finite. By the remark after Definition 2.5, any chain of prime submodules
of M is made up of at most D(R) + 1 distinct homogeneous chains of prime
submodules — each homogeneous chain corresponding to a different prime ideal.
By Lemma 2.6, the length of each homogeneous chain is at most (M) 1. Hence
each homogeneous chain has at most p(M) terms. Then the number of terms in
a chain of prime submodules of M is at most (D(R) 4 1)u(M). Therefore the
length of a chain of prime submodules is at most (D(R) + 1)p(M) — 1. ]
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COROLLARY 2.8: Let M be a finitely generated module over a domain R. Then
D(M) < u(M)D(R) + p(M) — 1.

Proof: Suppose that pu(M) = k. Then M is a quotient module of the free
module R%®). Thus D(M) < D(R™). The required result follows from Theorem
2.7. |

We shall give an example in section 6 (see Theorem 6.1) to show that in certain
cases in Corollary 2.8, D(M) = u(M)D(R) + p(M) — 1.

In order to determine D(R{™), we need to know something about the structure
of prime submodules of R(™. In the rest of this section, we shall investigate the
structure of prime submodules of R(™).

LEMMA 2.9: Let R be a domain, let n and k be positive integers, let M denote
the free R-module R, and let N be a submodule of M of rank n — k. Then N
is a 0-prime submodule of M if and only if there exist a non-zero 'k x n echelon
matrix (a;;) over R and a basis {u1,uz,...,up} of M such that

n
N = {ru +r2u2+-~-+rnunEM:Zaijrjzofori:1,2,...,k}.
=1

Moreover, in this case ht N = n — k.

Proof: The sufficiency part is clear. We now prove the necessary part.
Suppose that N is a 0-prime submodule of M. Note that M/N is torsion-free.
We have a short exact sequence

0— N-—- M- M/N —0,

where a and 7 are the natural injection and surjection, respectively. Then
tkM/N =n—1kN = k. If x € M, then we denote the image of z in M/N
by Z. Let {e1,e2,...,en} be the standard basis of M. Then {é1,€é3,...,6,} s a
generating set of M/N. After renumbering those €;’s, we may assume that

(a) {€1,€2,...,€} is linearly independent over R, and

(b) for each j = k+ 1,k +2,...,n, {€,€63,...,€k,€;} is linearly dependent
over R.
From (b), for each j = k + 1,k + 2,...,n, there exists a non-zero d; € R with
d;e; € @LlRe‘i. Put d = dky1di42---d,. Note that d # 0 and d(M/N) C
@le Ré;. Define a map

k
B: M/N — P Ré;: 7 — dz.

i=1
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It is clear that J is a well defined R-module homomorphism. As M/N is torsion-
free, 8 is injective. Then we have an exact sequence

k
0— N -5 M5 P Re.
i=1

Let A be the k X n matrix representing Sw with respect to the bases
{e1,e2,...,en} and {€3,¢€2,...,6x}. It is clear that A is in echelon form. In
fact A = [dI;|B], where Ij is the k x k identity matrix and B is an k x (n — k)
matrix over R. Since N = ker 8, it follows that N has the required form.

We now prove the moreover part. We have tk N = n — k. In other words, FN
has dimension 1 — & over F, the field of fractions of E. Hence there exists a chain

0=VCWVicWC - --CV, xy=FN
of subspaces of FM. It follows that
0=Vo(\MSVi(YMCVa(\MG - CVaik[|M=FN[M=N
is a chain of 0-prime submodules of M. Thus ht N > n — k. On the other hand,
if
0=NoGNGN G- CN, =N

is a chain of prime submodules of M, then (N; : M) C (N : M) = 0 so that
M/N; is torsion-free for all 0 < ¢ < ¢. Hence

0=FNyC FN, C FN,C---C FN, = FN

is a chain of subspaces of F'N, which gives ¢t < rk N = n — k. Therefore ht N =
n—k. |
Suppose that R is a domain. By Proposition 2.1, we have D(R™) > D(R) +

n — 1. If R has a prime ideal 3 such that v(Rgy) is sufficiently large, then the
following proposition gives a sharper lower bound for D(R™).

PROPOSITION 2.10: Let R be a domain with elements a; € R(1 <i <n) and a
prime ideal ‘B such that

n

S Uit Rai) €,

i=1

where I; = Zr}_;l_ Ra;. Then D(R™) > n+ D((R/P)™) > 2n+ D(R/P) — 1.

Proof Let M = R™. Put

P={(r1,r9,...,7n) E M :a1r1 +aora + -+ + anrp = 0}.



Vol. 127, 2002 ON CHAINS OF PRIME SUBMODULES 139

Note that a; # 0(1 < i < n). By Lemma 2.9, P is a 0-prime submodule of M
with ht P = n — 1. Moreover, P C BM. Thus

D(M) >htBM + D((R/B)™),
>n + D((R/B)™).

By Proposition 2.1, we have D((R/B)™) > D(R/P) + n — 1. Hence n +
D((R/B)") 2 2n + D(R/P) — 1. i

Note that, in the statement of Proposition 2.10, the assumption on B is equiv-
alent to #(Ryp) > n. We now end this section with a characterization of a prime
submodule P in R with Ann(R(™ /P) being a maximal ideal.

LEMMA 2.11: Let R be a ring, let 9 be a maximal ideal of R and let M be
the free R-module R\™ for some positive integer n. Then K is an 9M-prime
submodule of M if and only if there exist an integer 1 < k < n and a basis
{my,ma,...,my,} of M such that K = MMmy +---+Mmy + Rmgyq1 +- - -+ Rmy,.

Proof: The sufficiency part is clear. We now prove the necessary part. Suppose
that K is an 9M-prime submodule of M. If n = 1, then M = Rm and K = 9m
for some m € M. Suppose that n > 1. Let {ej,e2,...,e,} be the standard
basis of M. For each 1 < ¢ < n, let m: M — R be the homomorphism
defined by m;(r1,72,...,70) = r4, where (r1,72,...,1n) € M. If m(K) C M for
all1 <4 < n, then MM C K C m(Key + -+ + mn(K)e, C MM, so that
K =9M = Mey + - - - + Ne,,.

Now suppose that 7;(K) ¢ 9 for some 1 < j < n. Since MM C K, it
follows that 9 C «;(K) and hence m;(K) = R. There exists an element m; of
K such that 7;(m;) = 1 and hence {m1,ez,...,€;_1,€j41,...,€,} is a basis of
M. Moreover, if L = Zl . Re;, then L is a free R-module of rank n — 1 and
K = Rmy®(KnNL). Note that KNL is an M-prime submodule of L. By induction

on n, there exist an integer 2 < k < n and a basis {ma,,...,m,} of L such that
KNnL=Mmg+ - +Pmng + Rmgy1 + -+ Rm,. 1t follows that K = Rmy +
Mma+...+Mmy + Rmgy1+ - - -+ Rmy,, where {ma, ..., mg, my, Mgp1,..., My}

is a basis of M. [ |

3. Dimension over Priifer domains

It is well known that the Krull dimension of R is the supremum of the Krull
dimension of Ry, where the supremum is taken over all maximal ideals (or prime
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ideals) P of R. An analogous result holds for dimensions of modules. The
following was proved in [8, Proposition 1] and [9, Section 2].

PropPOSITION 3.1: Let P be a prime ideal of the domain R and M be an R-
module. Then Q@ — Qg is a bijective inclusion preserving map from the set
{Q : Q is a Q-prime submodule of M with Q C B} to the set of prime Rp-
submodules of the Ry-module My. The inverse map is L — L M.

PROPOSITION 3.2: For any module M over the domain R,

D(M) = sup{D(Myy) : M is a maximal ideal of R}.
Proof: Follows immediately from Proposition 3.1. |

Note that Proposition 3.2 remains valid if maximal ideals are replaced by prime
ideals.

LEMMA 3.3: Let R be a valuation domain, n be a positive integer and M be the
free R-module R™. Then D(M) = D(R) +n — 1.

Proof: By Proposition 2.1, D(M) > D(R) + n — 1. Thus it remains to prove
that D(M) < D(R) + n — 1. If D(R) = oo, then there is nothing to prove. For
the rest of this proof, we suppose that D(R) < oo.

If D(R) = 0, then R is a field and D(M) = dimg M — 1 = n — 1, because in
this case every proper submodule of M is prime.

Suppose that D(R) = d > 0 and the result holds for all valuation domains
of smaller dimensions. If n = 1, then M = R and hence D(M) = D(R) <
D(R) + n — 1. Suppose that n > 1 and the result holds for all free R-modules of
smaller rank. Let

0=FRchCPhCc-ChH

be a chain of prime submodules of M. Let P = P; and p = (P : M). Suppose
that ¢ # 0. Then D(R/P) < d — 1 and M/BM = (R/P)™. Moreover,
PM C P; and

P/BMC P/BM G - G R/BM

is a chain of prime submodules of the free R/P-module M/PM. By induction
ond,t—1<d—-1+n—1and hencet <d+mn—1.

Now suppose that 8 = 0. Then M/ P is a finitely generated torsion-free module
over a valuation domain. By [13, Theorem 4.32], M/P is projective. Then
M = P @ P’ for some submodule P’ of M. Note that P’ is a finitely generated
projective module over the quasi-local ring R, so that (see [13, Theorem 4.44]) P’
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is free. Since P # 0, it follows that P/ 2 R(™) for some natural number n’ < n.
Next P, =P & (P, P') foreach 1 <i<¢and

PP chRP G- CR[P
is a chain of prime submodules of P’. By induction on n,
t—1<DP)Y<DR)+n'-1<DR)+n-1,

and hence t < D(R) +n — 1.
In any case, t < D(R) +n — 1. It follows that D(M) < D(R)+n - 1. [ |

The next result has been proved by Azizi and Sharif [2, Theorem 3.1] for
Dedekind domains.

THEOREM 3.4: Let R be a Priifer domain and M be a finitely generated torsion-
free R-module. Then D(M) = D(R) + kM — 1. In particular, D(R™) =
D(R)+n —1.

Proof: Note that, as R is a domain, rkp M = rkpg,,, Mgy for any maximal ideal
M of R. In view of Proposition 3.2, it suffices to show the equality holds when R
is replaced by Ran, for any maximal ideal 9. Recall that the localization of any
Priifer domain at a maximal ideal is a valuation domain (see [6, Theorem 64]).
By Lemma 3.3, D(Mgr) = D{Rs) + rtk May — 1, as required. |

COROLLARY 3.5: Let R be a Priifer domain and M be any finitely generated
R-module. Then D(M) < D(R) + u(M) — 1.

Proof: This follows from Theorem 3.4 and the argument used in the proof of
Corollary 2.8. ]

Theorem 3.4 shows that in general there is no relation between D(M) and the
(Gabriel-Rentschler) Krull dimension of M, for a given module M. For example,
let R be a Dedekind domain (which is not a field) and let n be a positive integer.
By Theorem 3.4, D(R™) = n but R™ has Krull dimension 1.

THEOREM 3.6: The following statements are equivalent for a Noetherian domain
R.
(i) R is a Dedekind domain.
(ii) D(R™) = D(R) +n — 1 for any positive integer n.
(iii) D(M) < D(R) + p(M) — 1 for any finitely generated R-module M.
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(iv) D{(R®R) < D(R) + 1.

In Theorem 3.6, it is clear that (i) = (ii) = (iii) = (iv). We need a series of
lemmas for the proof of (iv) = (i).

LEMMA 3.7: For any domain R,
htg + D(R/P & R/P) < D(RD R),

where B is a prime ideal of R.

Proof: Note that if £ is a prime ideal of R, then Q® £ is a Q-prime submodule
of R® R. Also, any prime submodule of R/ & R/P is of the form Q/(B & P),
where @ is a Q-prime submodule of R @ R with 8 C 9. The required result
follows easily. |

LEMMA 3.8: The following statements are equivalent for any domain R.
(i) R is a one-dimensional Priifer domain.
(ii) D(R® R) < 2.

Proof: (i) implies (ii) follows from Theorem 3.4. We now show (ii) implies
(i) by a contrapositive argument, which was illustrated in [10, Example 3.3].
Suppose that R is not a Priifer domain. Then there exist elements a, b of R such
that (Ra : Rb) + (Rb : Ra) # R. Let 9 be a maximal ideal of R such that
(Rb : Ra)+ (Ra : Rb) C M. By Proposition 2.10, D(R & R) > 3. It follows that
(ii) implies (i). 1

LEMMA 3.9: Suppose that (R,9N) is a regular local ring of (Krull} dimension 2.
Then D(R® R) > 4.

Proof: Since R is regular of dimension 2, there exists an R-sequence a,b with
9% = Ra + Rb and the quotient rings R/Rb, R/Ra are one-dimensional regular
local rings (see [6, Theorem 161}), hence they are DVRs. It is well known that a
regular local ring is a UFD.

CLAIM: 9?2 contains a prime element.

JusTIFICATION: Clearly, a® + b2 is in 92. We now show that it is prime. For
suppose not. Then a® + b2 = zy for some elements z,y in 9. By passing to
the ring R/Rb and multiplying z by a unit u (and y by the inverse of u) we can
suppose without loss of generality that z = a? + rb and y = a + sb for some
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r,s in R. Now a® + b?> = (a? + rb)(a + sb) = a® + rab + sab + rsb?. Hence
b= ra+sa®+rsb. Now, as a, b is an R-sequence 1—rs belongs to Ra and r+ sa
belongs to Rb so that 1 belongs to Ra + Rb = 9, a contradiction. Thus a® + b2
is prime. The claim has been justified.

We now construct a chain of prime submodules of length 4 in R @ R. By the
above claim, 9M? contains a prime element p. As a,b is an R-sequence, R(a,b),
the cyclic submodule of R @ R generated by (a,b), is a 0-prime submodule of
R & R. Define

Apr(a,b) ={(z,y) € R® R: zb— ya € pR}.

It is easily verified that Apgr(a,b) is a pR-prime submodule of R® R. As (p,0) is
in Apr(a,b) but not in R(a,b), R(a,b) is strictly contained in Apr(a,b).

We now show that Apg{a,b) is strictly contained in 9 & 9. Suppose that
(z,y) € Apr(a,b)\(IM @ M). Without loss of generality, we may assume that =
is a unit. Then b € Rp+ Ra. It follows that 9t = Ra+ Rb= Ra+ Rp. Aspisin
M2, we get M = Ra -+ M2. By Nakayama’s Lemma, I = Ra, which contradicts
R is of dimension 2. Therefore, Apr(a,b) is contained in I @ M. As (a,0) is
in 9 @ M and not in Aygr(a,b), the above inclusion is strict. From the above
argument,

0C R(a,b) C Apr(a,b) CMeMC ReM
is a chain of prime submodules of length 4 in R & R. ]
In fact, it could be shown that D(R @ R) = 4 in Lemma 3.9.

THEOREM 3.10: Suppose that R is a Noetherian domain with D(R ® R) <
D(R) + 1. Then R is a Dedekind domain.

Proof: By Proposition 3.2, we may assume that R is a local Noetherian domain
of dimension at least one with maximal ideal 9. If D(R) = 1, then by Lemma
3.8, we are done. To finish off the proof, we first show that D(R) = 2 is not
possible and then use it to deduce that D(R) can not be greater than 2.

Suppose that D{R) = 2. By assumption, D(R & R) < 3. It follows from
Lemma 3.9 that R is not regular. Thus R has a height one prime ideal P such
that R, the localization of R at ‘B, is not a DVR. Hence there exist a, b in P with
b € PRyp\(aRy) and a € PRp\(bRy). Then (Ra : Rb) + (Rb : Ra) € B. By
Proposition 2.10, D(R®R) > 4+D(R/9B)—1 > 4. This contradicts D(R®R) < 3.
Therefore D(R @ R) cannot equal 2.
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Suppose that D(R) > 3. Put n = D(R). Let

0GP C PG CPa2CPr1 G P =M
be a chain of prime ideals of length n in R. Let R = R/P,_». Note that

ht Pp—2 + D(R) = n, ht B,—2 =n — 2 and D(R) = 2.
By Lemma 3.7 and assumption

htP, 2+ D(R®R) < D(R®R) < D(R) + 1.
Hence ht P + D(R®R) < (htPn—2+D(R))+1,ie., D(R®R) < D(R) +

1
with D(R) = 2. We have seen earlier that this is not possible. Thus D(R) > 3 is
not possible. [ |

Proof of Theorem 3.6: (i) = (ii) by Theorem 3.4. (ii) = (iii) follows from the
proof of Corollary 2.8. It is clear that (iii) = (iv). By Theorem 3.10, (iv) = (i).
|

Note that in the above proof, we only need R to be Noetherian in the implica-
tion (iv) = (i). It is not known whether Theorem 3.10 holds without R being
Noetherian.

4. Dimension of finitely generated modules over Dedekind domains

We want to calculate D(M) in case M is a finitely generated module over a
Dedekind domain. In view of Proposition 3.2, in calculating D(M) we can reduce
to the case when R is quasi-local, i.e., R has a unique maximal ideal. If I is an
ideal of an arbitrary ring R, then an R-module X is called I-torsion if, for each
z € X, there exists a positive integer n such that I"z = 0.

LEMMA 4.1: Let R be a quasi-local ring with unique maximal ideal 9 and let
an R-module M = M, @ M, be a direct sum of submodules My, My, where Ms
is M-torsion. Let P be a non-maximal prime ideal of R. Then L is a B-prime
submodule of M if and only if L = K & M; for some B-prime submodule K of
Ml.

Proof: Let L be a P-prime submodule of M for some prime ideal P # M.
For each x € M, there exists a positive integer n such that 9"z = 0 C L,
so that z € L. Hence My C L and L = K & M,, where K = LN M;. Since
M, /K & M/L, it follows that K is a PB-prime submodule of M.

Conversely, if L = K & M, for some P-prime submodule K of My, then
M/L = M, /K gives that L is a ‘B-prime submodule of M. 1



Vol. 127, 2002 ON CHAINS OF PRIME SUBMODULES 145

LEMMA 4.2: Let R be a quasi-local ring with unique maximal ideal 9 and let
an R-module M = M; @ M» be a direct sum of finitely generated submodules
M, My, where My is M-torsion. Then D(M) = max{D (M), u(M) — 1}.

Proof: Because M; is a homomorphic image of M we see that D(M;) < D(M).
Moreover, D(M) > D(M/9MM) = p(M/9MM) — 1. But u(M/DMM) = u(M) by
Nakayama’s Lemma. Hence D(M) > u(M) — 1. Let

LoC L C---C L

be any chain of prime submodules of M, for some non-negative integer ¢. If
(Lo : M) = 9, then t < u(M) — 1. Suppose that (Lo : M) =P for some prime
ideal 3 # 9M. By Lemma 4.1, Ly = Ko & M, for some PB-prime submodule Ky
of M. Moreover, L; = K; ® M, for some prime submodule K; of M; for each
1 < i< t. Clearly,

Ko G K1 G- C Ky

is a chain of prime submodule of M;. Hence ¢t < D(M,). It follows that D(M) <
max{D(M1), p(M) — 1}. |

THEOREM 4.3: Let R be a domain, let n be a positive integer, let B;
(1 € 1 < n) be distinct maximal ideals of R and let an R-module M =
M &M & - ® M, be a direct sum of a finitely generated torsion-free sub-
module M’ and finitely generated B;-torsion submodules M;(1 < i < n). Then
D(M) = max{D(M"), u(M/F1M) — 1, ..., s(M/FuM) — 1}.

Proof: Let ¢ be any maximal ideal of R. Suppose that P # P; (1 <i < n).
Then My = Mg and hence D(Mg) = D(My) < D(M’) by Proposition 3.2.
Now suppose that p = PB; for some 1 < ¢ < n. Then My = My & M; and
hence D(My) = max{D(Mgy), p(Mg/PBMg) — 1} by Lemma 4.2. But D(Mgy) <
D(M') and Mg /PMyp = M/PBM. By Proposition 3.2, we have proved that
D(M) < max{D(M"), u(M/PBaM) ~ 1,...., u(M/P M) ~ 1.

Conversely, D(M’') < D(M) because M’ is a homomorphic image of M.
Moreover, for each 1 < ¢ < n, p(M/P;M) -1 = D(M/P;M) < D(M). The
result follows. 1

COROLLARY 4.4: Let R be a domain, let n be a positive integer, let ; (1 < i <
n) be distinct maximal ideals of R and let an R-module M = Mo M &®---® M,
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be a direct sum of a free submodule M’ of finite rank k and finitely generated
B;-torsion submodules M;(1 < ¢ < n). Then

D(M) =max{D(M"), u(My) + k — 1,..., (M) + k — 1}.

Proof: For each 1 < i < n, M/P:;M = (R/P;)*®) & (M;/P;M;) and hence
p(M/B:M) = k + p(M;/P:iM;). Since M; is P;-torsion, it follows that
p(M; /B M;) = u(M;). Apply Theorem 4.3. |

We now apply Theorem 4.3 and Corollary 4.4 to find D(M) in case M is a
finitely generated module over a Dedekind domain.

THEOREM 4.5: Let R be a Dedekind domain and let M be a finitely generated
R-module. Then M = M'® M, & --- ® M, is a direct sum of a torsion-free
submodule M’ and PB;-torsion submodules M;(1 < i < n) for some positive
integer n and distinct maximal ideals B;(1 < i < n). Moreover,

D(M) = max{rk M’ + p(M;) —1:1<i<n}.

Proof: The first part is well known. If M’ = 0, then rk M’ = 0 and the result
follows by Corollary 4.4. Suppose that M’ # 0. By [4, Theorem 6.11], there
exist a positive integer k and an ideal I of R such that M’ =~ R*-1) g I. For
any maximal ideal B of R, I/BI = R/P (see [4, Corollary 6.5]) and M’/ PM' =
(R/P)*). By the proof of Corollary 4.4, u(M/P;M) = k + u(M;) = rk M’ +
p(M;) for all 1 < ¢ < n. Also, Theorem 3.4 gives that D(M’') = rkM’. By
Theorem 4.3, D(M) = max{rk M’ + p(M;) - 1:1<i<n}. |

Next we prove that if R is a Dedekind domain, then the lower bound in
Proposition 2.2 is attained.

COROLLARY 4.6: Let R be a Dedekind domain and let M be a finitely generated
R-module. Then D(M) = sup{D(R/P) +rkg M — 1 : P is a prime ideal of R
and ann(M) C B}.

Proof: Asin Theorem 4.5, M = M'@ M, &---®M,, is a direct sum of a torsion-
free submodule M’ and P;-torsion submodules M; (1 < i < n), for some positive
integer n and distinet maximal ideals 9;(1 < i < n). Suppose that M’ = 0.
Let P be any prime ideal of R such that ann(M) C . Then P = P; for some
1 <4 < n. In this case, D(R/P) +rkg M —1 = 0+ pu(M/PM) — 1. By Theorem
43,

D(M) = sup{D(R/P) +rkeg M —1: P is a prime ideal of R and ann(M) C B}.
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Now suppose that M’ # 0. In this case, ann(M) = 0. Let P be a prime ideal
of R. If P = 0, then D(R/P)+rkg(M)—1 =rk M’, because D(R) = 1. Suppose
that P = P, for some 1 <4 < n. Then D(R/PB) = 0 and rkp M = u(M/PM).
Finally, suppose that 8 is a maximal ideal of R such that P #£ B, (1 < i < n).
Then D(R/PB) = 0 and M/PM = M'/PBM’, so that rkgg M = rk M'. We have
proved that, for any prime ideal B of R,

rk M’ if P =0,
DRR/P)+rkg M —1= {;;(M/‘,BM) —~1 ifP=P, forsomel<z<n,
rkM' —1 otherwise.
But rkM' = D(M’') by Theorem 3.4. By Theorem 4.3, D(M) =

sup{D(R/P) + rkeg M — 1: P is a prime ideal of R and ann(M) C ‘B}. [ |

THEOREM 4.7: Suppose that R is a Noetherian domain. Then R being Dedekind
is equivalent to

D(M) = sup{D(R/P)+rkg M —1: P is a prime ideal of R and ann(M) C B},

for any finitely generated R-module M.

Proof: The necessary condition is just Corollary 4.6. For the converse, put
M = R®. Then D(M) = D(R) + 1. Now, R is Dedekind follows from Theorem
3.6. |

5. Dimension of free modules

Let R be a Noetherian one-dimensional domain and ‘P be any maximal ideal of
R. The local domain Ry is one-dimensional and Cohen (3, Theorem]| proved that
there exists a positive integer k such that every ideal of Ry can be generated by
k elements.

Recall that from section 1, v(Rq) is defined to be the least positive integer k
such that every ideal of Ry can be generated by k elements. Also, we define

V(R) = sup{v(Rg) : P is a maximal ideal of R}.

Note that v(R) is a positive integer or ¥(R) = co. In [3, pp. 39-40], an example
is given of a Noetherian one-dimensional domain R such that v(R) = co. Note
that a Noetherian domain R is Dedekind if and only if R is one-dimensional and
v(R)=1.

For any real number r, we let [r] denote the greatest integer s such that s < r.
Given an integer ¢, we write v(R) | t if ¥(R) is a positive integer and v(R) divides
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t; otherwise, we write v(R) { t. Moreover, if v(R) = oo, we define [n/v(R)] =0
for any positive integer n. We shall prove Theorem 5.1 in a series of lemmas.

THEOREM b5.1: Let R be a Noetherian one-dimensional domain and let n be a
positive integer. Then

2 | 2n—n/v(R) ifv(R) | n,
D(R™) = {2n —[n/v(R)]—1 ifv(R){n.

We deal first with the case v(R) = oc.
LEMMA 5.2: Let R be a Noetherian one-dimensional domain. Then, v(R) > n

if and only if D(R™) = 2n — 1.

Proof: Let M = R(™. By Theorem 2.7, D(M) < 2n—1. Suppose that v(R) > n.
Then there exists a maximal ideal *B of R such that v(Rg) = k > n. Let I be
an ideal of Ry such that I can be generated by k, but no fewer, elements. Then
I = Rypa; + Rypaz + - - - + Rypay, for some elements a; (1 <¢ < k) of R. Let

K:{(T1,T2,...,’I'n) EM:ayr;i+agre+ -+ anry, :0}‘

By Lemma 2.9, K is a 0-prime submodule of M and ht K = n — 1. Moreover, if
ri € R(1<i<n)and airy +aara+ -+ apry =0, then r; is not a unit in Ry
and hence r; € P for 1 <i < n; that is, K C PM. It follows that

D(M) >D(M/PBM) + ht(PM),
>D(M/PBM)+1+ht K,
>n—1)+1+(n-1)=2n-1

Thus D(M) =2n — 1.
Conversely, suppose that D(M) = 2n — 1. Let

0=RCPCPRC - CPn

be a chain of prime submodules of M. From Lemma 2.6 and D(M) = 2n — 1,
0=RChGCPC ¢ P

is a homogeneous chain of 0-prime submodules of M; and
PoGPrap1 G Poya G G Prans

is a homogeneous chain of 9M-prime submodules of M, where 9 is a maximal
ideal. As the length of any homogeneous chain of 9-prime submodules of M is
at most n — 1, we have P, = M.
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By Lemma 2.9, there exist elements a; € R(1 < i < n) and a basis
{u1,us,...,u,}, which we may assume to be the standard basis, of M such
that

Po1={(r1,re,...,mn) € M s ayr1 + asra + -+ - + apry, = 0},

Fix an integer ¢ between 1 and n. Let I; = Ra;+---+ Ra;_; + Ra;11+- - -+ Ra,
and r € (I; : Ra;). Then

TG; = 8101 + - -+ 8101 + 8i418541 + -+ -+ 5p8n
for some s; € R (1 < j <n,j#1). It follows that
(Sl) e 851, T S, - -75n) S Pn——l g mM)

so that r € 9. Hence Y. ,(I; : Ra;) C9M. Let I = Ray + Rag+---+ Ra,. It is
easy to check that Isn can be generated by n, and no fewer, elements over Rgy.
It follows that v(R) > v(Rgm) > n. |

Note that in proving Lemma 5.2, we do not need R to be Noetherian. In view
of Lemma 5.2, Theorem 5.1 is true for v(R) = co. We now suppose that v(R)
is a positive integer. The next step is to reduce to the local case. It will be
convenient to call temporarily a Noetherian one-dimensional domain R good if
R satisfies the conclusion of Theorem 5.1.

LEMMA 5.3: Suppose that R is a Noetherian one-dimensional domain with v(R)
< 00 and the local domain Ry is good for every maximal ideal B of R. Then R
is good.

Proof: Suppose that ¥(R) = k (so that k is a positive integer). There exists a
maximal ideal B of R such that v(Rg) = k and v(Rgq) < k for every maximal
ideal . Suppose that k | n. Let M = R(™. By hypothesis, D(My) = 2n —n/k.
Suppose that there exists a maximal ideal Q of R such that v(Rg) < k. Then
n/k < n/v(Rg) and hence n/k < [n/v(Rgq)]. By hypothesis,
2n —n/v(R if v(R n,
D(Mg) = {:m - [n//y((zfg))] _1if VERE; ’l(n.
Hence D(Mgq) < 2n — n/k. By Proposition 3.2, D(M) = 2n — n/k, as required.
Now suppose that k { n. By hypothesis, D(Mg) = 2n — [n/k] — 1. Again let
9 be a maximal ideal of R such that v(Rg) < k. Then [n/k] < n/k < n/v(Rg).
But, by hypothesis,

_[on-n/m(Ba)  ifu(Ra)|n,
D(Mg) = {2n —[n/u(Ra)] -1 if v(Rq)n.
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Hence D(Mgq) < 2n — [n/k] — 1. By Proposition 3.2, D(M) = 2n — [n/k] — 1.
1

We shall need the following result to prove Theorem 5.1 holds for local domains.

LEMMA 5.4: Let R be a Noetherian one-dimensional local domain with unique
maximal ideal M and v(R) = k < oo. Let n be a positive integer. Write
n = kq + r for some non-negative integers q,r with 0 < r < k. Let K be a
0-prime submodule of R™ with K C MR™. Then WK < n — g, ifk | n, and
ht K < n — q — 1, otherwise. Furthermore, the maximums are attainable.

Proof: Let M = R™). Suppose that k = 1. Then R is a DVR and n = q. We
have ht K + 1+ D(M/MM) < D(M). As M/9MM is an n-dimensional vector
space over R/, D(M/9MM) = n — 1. Since R is a DVR, by Theorem 3.4,
D(M) = n. 1t follows that ht K = 0. We have shown that ht K < n — ¢ when
k=1

Suppose that k > 2 and n < k. Then ¢ = 0. We have ht K +1+ D(M/MM) <
D(M). By Theorem 2.7, D(M) < 2n— 1. Hence MK +1+n -1 < 2n -1,
which gives ht K <n —1.

From now on we may assume that £ > 2 and n > k. By Lemma 2.9, we can
suppose without loss of generality that there exists an m x n matrix A over R,
for some integer 1 < m < n, such that

K={(’I‘1,’I‘2,...,7‘n)eR("):A . =0}

Tn
and t K =n —m.

We now show that if k | n, then ht K < n — ¢. The other case k { n can be
proved in a similar fashion. Suppose that k¥ | n and ht K > n — ¢. Then m < q.
Let I be the ideal generated by all the entries of row 1 of A. As v(R) =k, I
is generated by k of the entries in row 1 of A. Hence there exists an invertible
n X n matrix F1 over R such that the last n — k entries of row 1 of AFE; are all
zero. In other words, if AE; = (b;;), then by; = 0 for £+ 1 < j < n. Similarly,
there exists an invertible n x n matrix F5 over R such that

(i) the last n — k entries of row 1 of AE; E; are all zero,

(ii) the last n — 2k entries of row 2 of AE; E5 are all zero.

By repeating the above process, there exists an invertible n x n matrix F over
R such that, for d = 1,2,...,m, the last n — dk entries of row d of AE are all
Z€ro.
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Write AE = [B|C], where B is an m X (mk) matrix and C is an m X (n —mk)
zero matrix. In particular, all the entries in the nth (last) column of AE are

zero. Write
0 c1
0 C2
E = : ,
0 Cn—-1
1 Cn,

which is the nth column of E. Then (ci,ca,...,c,) is in K. As K C MR™),
c; € Mfor all 1 < i < n. This implies that det E € 9N, which contradicts E is
invertible. Therefore ht K < n — q.

We prove the last assertion by constructing a 0-prime submodule of R(™ | which
is contained in MR™, of height n—gq, if k | n, and of height n — g — 1, otherwise.
As v(R) = k, there exist ai,as,...,a; € R, such that J = Ra; + Ras+- - -+ Ray,
and J cannot be generated by less than k elements. Then Zle(Ji : Ra;) C M,
where J; = Z’Z;} Raj for 1 <i<k. Let

K ={(z1,22,...,2,) € R :
@1%ik+1 + Q2Tik+2 + -+ AT (1)K = 0(0 <i<Lq- 1) and
1T gk+1 + 2T gk+2 + -t apry, = 0}

Note that K C 9MR™. By Lemma 2.9, K is a 0-prime submodule of R(™ and

_fn—gq ifk|n,
htK_{n—q—l ifkin. "

LEMMA 5.5: With the notation of Lemma 5.4,

m)\ _ J 2n~n/v(R) if v(R) | m,

D(&™) = {2n —[n/WR) -1 ifv(R)in.

Proof: Let M = R™ and v(R) = k < co. By Theorem 2.7, D(M) < 2n — 1
< 0o. Let D(M) =t and let

KoCKiC K G- C K,

be a chain of prime submodules K;(1 < i <t) of M. As R is a one-dimensional
local domain with unique maximal ideal 90, for each 1 < i < ¢, K; is 9M-prime
or O-prime. Moreover, K; is M-prime, Ky = 0 and Ky is 0-prime. There exists
0 < s < t such that K; is O-prime if 0 < 7 < s and M-prime if s +1 <7 < ¢.
Consider the 9-prime submodule K;.,. By Proposition 2.11, there exist a basis
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{u1,u2,...,u,} and a positive integer 1 < k < n such that K;41 = Muy +
oo+ 9Mup + Rupyy + - + Ru,. Note that M/K .1 = (R/MM)™), so that
D(M/Ks—}-l) =h-1

Now consider the 0-prime submodule K. By Lemma 2.9, there exists an mxn
matrix A over R, for some integer 1 < m < n, such that

™
T2
K,={rius+mrus+---+rpu, e M: A : =0},

Tn

and ht K =n —m.

Fori=1,2,...,n—h,let Q; = WMus + -+ - + Mup4; + Ruppip1 + - + Rup.
Clearly, each @;(1 <% < n—h) is an 9M-prime submodule of M with Q; C K.
Note that Q,_p = MM and

Qn-n G Qn_rs1) &+ G Q1 & Kspa-

Hence, ht K, 1 > (n — h) + ht Q,,_p. Write n = k¢’ + r’, where ¢/, are non-
negative integers with 0 < r’ < k. By Lemma 5.4,

_fn—¢+1 ifk|n,
th"'h_{n—q' if ktn.

Ass=htK;,=n—-mand ht K411 =5+ 1,

h+(¢ —n) if k| n,
m < {h+(q’+1—n) if k4 n.

In any case, m < h.
Write A = [B|C], where B is an m x h matrix and C is an m X (n — h) matrix.

Let
T1

K ={ru;+rug+---+rpup € M: B 71:2 =0}.
Th

By Lemma 2.9, K is a 0-prime submodule of height h —m in Ruy +- - -+ Rup,
and K is contained in Muy + - - - + PMuy,. Write h = kg + r, where g, 7 are non-
negative integers with 0 < r < k. By Lemma 5.4, m > ¢, if k | hand m > ¢+ 1,
otherwise. Hence ht K, < n —¢q, if k| h and t K < n — ¢ — 1, otherwise. By
an argument used in the last part of the proof of Lemma 5.4, we can construct a
0-prime submodule P in M such that
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(i) P is contained in Muy + - - - + NMup + Rupyy + Rupyz + - - - + Ruy, and
(i) t P=n—gq,ifk|h,and t P =n — ¢ — 1, otherwise.

Therefore itk | b
_Jn—gq i ,
bt K, = {n——q—l if k1 h.

It follows that

h+n—h/k if k |k,
h+n—[h/kj-1 ifkth.

Let f: {1,2,...,n} — N be the mapping defined by

_[h+n-h/k if k| b,
f(h)_{h+n~[§z/k]—l itk 1.

It is easy to check that f is increasing and hence

t=(h—-1)+1+htK3:{

2n —n/k if k| n,
t:f("):{zn—Fn/k]1 itkin. W

Proof of Theorem 5.1: By Lemmas 5.2, 5.3 and 5.5. ]

The proof of Theorem 5.1 shows that if R is a Noetherian one-dimensional
domain and n is a positive integer, then D(R(™) = D((R/9)(™) + ht(9MR™)
for some maximal ideal 90 of R.

We end this section with a characterization of v(R).

THEOREM 5.6: Let R be a Noetherian one-dimensional domain and n be a
positive integer. The following statements are equivalent.

(i) v(R) =n.

(ii) D(R®) =2k —1 fork =1,2,...,n; and D(R®) < 2k — 1 for all k > n.

Proof: (i)=(ii) By Theorem 5.1.

(ii)=(i) Let m = v(R). Suppose that m > n. Then, by (ii), D(R™) < 2m — 1,
which contradicts Theorem 5.1. Thus m < n. Suppose that m < n. By Theorem
5.1, D(R™) < 2n — 1, which contradicts (ii). Thus m = n. ]

COROLLARY 5.7: The following statements are equivalent for a Noetherian one-
dimensional domain R.

(i) ¥(R) = oc.

(ii) D(R™) = 2k — 1 for every positive integer k.

Proof: By Theorems 5.1 and 5.6. 1
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6. An example

In section 2, we promised to give an example of a domain R and a finitely
generated R-module M such that D(M) = u(M)D(R) + p(M) — 1. We do this
next. Recall that a non-zero integer d is called square-free if d ¢ Zp? for every
prime p in Z. Clearly, if d is a square-free integer then d £ 0(mod4). Let d be
a square-free integer and let R denote the subring Z[vd] = {a + bv/d : a,b € Z}
of the field C of complex numbers. Then R is a Noetherian one-dimensional
domain. If d = 2 or 3(mod4), then R is a Dedekind domain and D(R(™) = n
for all n > 1.

THEOREM 6.1: Let d be a square-free integer such that d = 1{mod4) and let R
be the ring Z[v/d]. Then D(R®) = 3 and D(R™) < 2n — 1 for alln > 3.

Proof: Define p: R — Z/Z2 by ¢(a + bv/d) = (a + b) + Z2 for all a,b € Z. Tt
is easy to check that ¢ is a ring epimorphism. If 91 is the maximal ideal ker ¢,
then M = {a +bvVd : a,b € Z,a+b € Z2} = R2+ R(1 +Vd). It is also easy to
check that
(R2: R(1+ Vd)) + (R(1+ Vd) : R2) C oM.

Then v(R) > v(Rom) > 2. By Lemma 5.2 , D(R®) = 3.

Suppose that D(R®)) = 5. By Lemma 5.2, there exist elements a,, az,a3 in R
such that

(*)  (Ras+ Ras: Ray) + (Ray + Ras : Ras) + (Ray + Ras : Ra3) # R.

But R = Z & Z+/d, so that R is a free Z-module of rank 2 and hence there exist
m; € Z({1 < i < 3) such that

miay + moag + mgag = 0.

Without loss of generality, the integers my,mgq, mg are coprime and hence Z =
Zmy + Zmg + Zmg. Thus

3
1€ Zmy+Zmg+ Zmz C Z((Z Ra;) : Ray),

and we have Z?zl((z%; Ra;) : Ra;) = R, contradicting (*). Thus D(R®)) < 5.
FH#t
Together with Proposition 5.6, we have D(R(")) <2n—1foralln>3. |
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